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Introduction
● UAVs - demand the verification of dependability properties in different levels 

of abstraction in order to achieve certification and to be released for operation 
(in compliance with DO-178C and SAE ARP 4754A aerospace standards).
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Introduction
● Dependability analysis: it is the identification, early on the design, of potential 

threats  to system reliability, availability, integrity and safety;

● Variation in the Usage Context might raise: 

○ Different hazards with different causes;

○ Different risk that the same  hazard  may  pose  for  the  overall  safety;

○ Different component faults might occur and contribute to the occurrence of  
hazards,  and;

○ Different  safety  requirements  (functional  and non-functional) may be 
allocated to eliminate or minimise the hazard effects.
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Introduction
● There is a lack of systematic guidance to support engineers in performing 

dependability analysis in the autonomous UAV domain;

● We provide a systematic and context-aware model-based approach to 
support dependability analysis and automated generation of artefacts required 
for safety-certification of UAVs.

● This approach was applied in the SLUGS autopilot with the support of 
HiP-HOPS tool.
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SLUGS Autopilot

● Santa Cruz Low-Cost UAV GNC 
Subsystem (SLUGS);

● Open source;
● Open hardware;
● Developed in MATLAB/Simulink
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DePendable- ASE
● Analysis of interactions among design 

choices and usage contexts;
● Scoping the autonomous system 

dependability analysis to a set of targeted 
scenarios;

● Allocation of Safety Requirements;
● Component Fault Modeling
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Identify Candidate Scenarios
● Controlled and Uncontrolled airspaces 
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HARA 
Inputs:  

● The selected usage scenario.

Purpose: 

● After choosing a scenario, HARA can be 
performed. Combinations among component 
failures leading to system-level failures 
(hazards) are identified; 

● Hazards can be specified via  logical 
expressions involving potential safety-related 
failures in system architectural components.
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HARA 
Output:  

● A list of context-specific hazards and the 
classification of the risk that they pose for the 
overall safety.    
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Allocation of Safety Requirements
Inputs : HARA results

● From the analysis of the HARA results, 
functional safety requirements and Safety 
Integrity Levels (SILs) are allocated aimed at 
eliminating or minimising the hazard effects 
on the overall safety. 
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Allocation of Safety Requirements
Purpose:

● Safety Integrity Levels (SILs) are allocated to 
each identified hazard according to their risk 
classification defined during HARA; 

● SILs allocated to system hazards can be 
further decomposed throughout contributing 
component failures and components. 

● Allocation of functional safety requirements: 
aims at identifying system functions that can 
eliminate/minimising the impact of a hazard 
or a component failure in the overall safety. 
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Allocation of System Safety Requirements
Output:

● A set of  context-specific functional 
safety requirements and SILs to be 
allocated the mitigate the hazard 
effects on the overall safety.
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Component Fault Modeling
Inputs:

● HARA results;

● The system architecture model; and 

● The targeted scenario.
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Component Fault Modeling
Purpose:

● From the analysis of the potential hazards 
that can be raised in a particular scenario, 
assumptions about how architectural 
components can fail and contribute to 
each identified hazard can be made;

● The failure behaviour associated with 
each component is specified by: stating 
what can go wrong with the component, 
and how it responds to failures elsewhere 
in the architecture.
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Component Fault Modeling
 Outputs:

● At the end, a set of component failure 
data showing how components can 
contribute to the occurrence of hazards 
in each scenario is delivered. 

● The system architecture model is 
enhanced with dependability 
information
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Fault Trees and FMEA Synthesis
 Inputs:

●  The system architecture model enhanced with specific dependability information.

Purpose:

● Generating FTA and FMEA artefacts, which are evidence required by safety standards, 
e.g., ARP 4754A, from a system model enhanced with dependability information;

● In this step the system architecture model enhanced with dependability information are 
input to compositional analysis techniques, e.g. HiP-HOPS, to automatically generating 
fault trees and FMEA dependability artefacts. 
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Fault Trees and FMEA Synthesis
 Outputs:

● FTAs and FMEA results used to 
demonstrate that the system 
architecture addresses the safety 
requirements.

● FTA illustrates how system-level failures 
(hazards) propagate throughout the 
system architecture;

● FMEA illustrates how each component 
contributes directly/indirectly to system 
failures.
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A Study Case
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SLUGS DEPENDABILITY ANALYSIS
SLUGS autopilot mainly comprises 
the following five subsystems : 
Navigation

● Longitudinal Channel ;
● Lateral Channel;
● ComputePSIDotL1OutputFeed

backController;
● Navigation;
● ComputePSIDot

The application of DEPendable-ASE 
approach steps to SLUGS autopilot 
is detailed in the following.
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Scenarios for SLUGS Safety/Dependability Analysis
The following scenarios were considered in performing SLUGS autopilot HARA 
and component fault modelling: 

● SLUGS operating in a controlled airspace usage context 
(SLUGS/Controlled), and SLUGS operating in an uncontrolled airspace 
(SLUGS/Uncontrolled)
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Hazard Analysis and Risk Assessment
Value double longitudinal angle:

● Occur due the incorrect value of both 
dE and dC outputs from Longitudinal 
Channel component. 

Value lateral channel: 

● Occur due to incorrect value of dA and 
dR outputs from Lateral Channel 
component.
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Hazard Analysis and Risk Assessment
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Risk assessment depends on the usage 
context (controlled or uncontrolled)

=> higher severity level for the controlled 
airspace (less tolerant because of the more 
significant damages)



HARA and Allocation of Safety Requirements
Level A is the highest stringent integrity, and level E 
is the less stringent. Addressing higher stringent 
DALs demand the most stringent safety objectives, 
system engineering activities, and software 
artefacts, increasing the development costs. 

Value double longitudinal angle:

● Hazard has a hazardous (B) severity with 
probability of occurrence of 10e-9 per hour of 
operation in a controlled airspace context (SC). 
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Component Fault Modelling
During the SLUGS autopilot component 
fault modelling, 29 failure expressions 
were added to 11 SLUGS model elements. 

Example: an incorrect value of dErad 
output deviation can occur due to an 
internal failure or due to an incorrect 
value of one of the Longitudinal Channel 
input ports.
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Fault Trees and FMEA

● The occurrence of  
LongitudinalChannel.dErad and 
LongitudinalChannel.dTabs component 
output deviations are top-level failures of 
incorrect value for double longitudinal 
angle fault tree.
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Conclusion
● The application of the proposed approach reduced the effort, costs, and 

the number of errors in performing Hazard Analysis and Risk 
Assessment (HARA), component fault analysis/modelling, and enabled the 
automated generation of FTA and FMEA dependability artefacts required 
by the standards to achieve safety.

● The use of Bayesian Networks (BN) to improve the analysis of the 
relationships between safety/security in the unmanned aerial vehicles 
domain.
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