

Fuzz Testing for Automotive cyber-security

Practical Experimentation Daniel S. Fowler

June 25th, 2018

© HORIBA MIRA Ltd. 2018

Daniel S. Fowler

PhD. Research Student, Automotive Cyber-security

Fuzz Testing for Automotive Cyber-Security

The HORIBA MIRA Collaboration With Coventry University

Systems Security Research Group, Institute of Future Transport and Cities

© HORIBA MIRA Ltd. 2017

Coventry University & HORIBA MIRA Collaboration

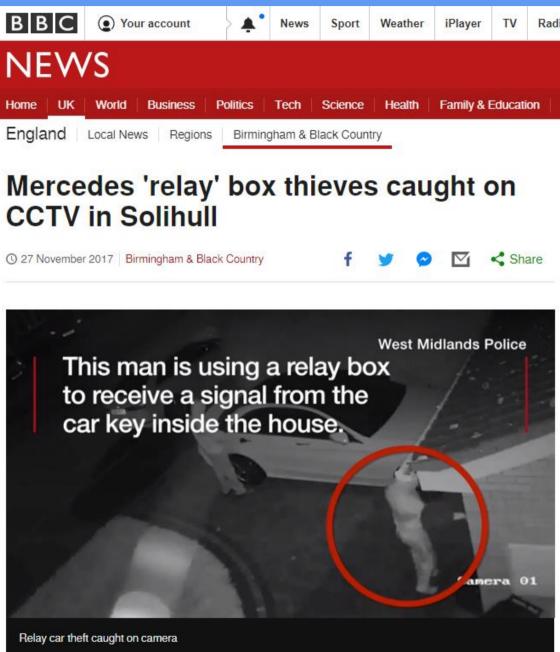
Coventry University Multidisciplinary teaching and research

- Centre of England
- Global vision
- Strong ties to automotive industries

HORIBA MIRA

- Also in central England at an ex-WWII airfield
- Engineering, research and test services
- Automotive, defence, aerospace and rail
- Motor Industry Research Association (MIRA)
- Owned by Japanese company HORIBA





A Vehicle is a Hackable Cyber-Physical System

How can vehicle manufacturers test for cyber-security?

ΒB	С	() You	ur account	≜ `	News	2
NE	W	/S				
Home	UK	World	Business	Politics	Tech	-
Engla	ind	Local Nev	ws Regior	ns Birmir	ngham & I	Bla

CCTV footage has been released showing thieves using a "relay" device, which receives a signal from the victim's key inside their home, to steal a car.

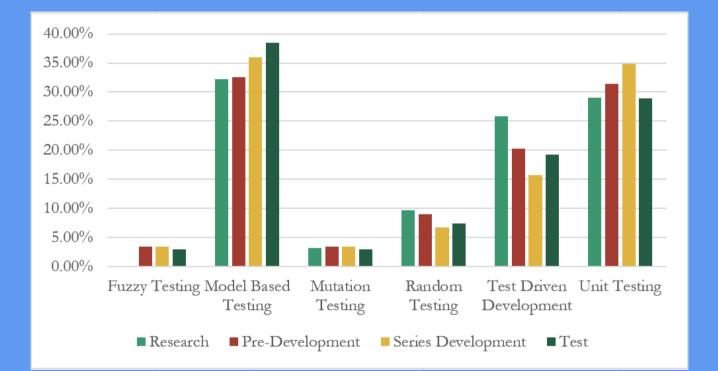
http://www.bbc.co.uk/news/uk-englandbirmingham-42132689

What would be worst than Dieselgate in the future?

Worst case scenario, a vehicle virus!

"One of the biggest risks for autonomous vehicles is somebody achieving a fleet wide hack." – Elon Musk

Source: NGA 2017 Summer Meeting - https://youtu.be/2C-A797y8dA

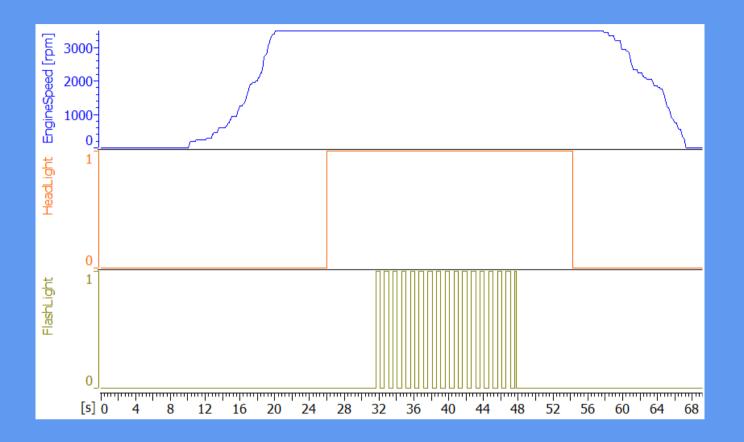


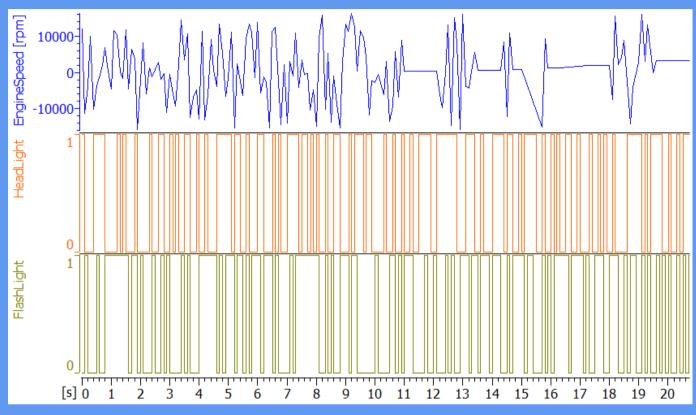
December 4th 2017

What testing methods can be used for nonfunctional (security) testing?

H. Altinger, F. Wotawa, and M. Schurius, "Testing methods used in the automotive industry: results from a survey," in Proceedings of the 2014 Workshop on Joining AcadeMiA and Industry Contributions to Test Automation and Model-Based Testing - JAMAICA 2014. San Jose, California: ACM, 2014, pp. 1–6

Should we use more tests that use random and mutated inputs, and huge data volumes?


If so, how do we make such tests useful?



What is a fuzz test?

Normal signals

Random data injection

- A dynamic analysis test method.
- Well established in traditional IT systems testing.
- Monitor the system response to lots of random inputs. \bullet

Target for Fuzzing

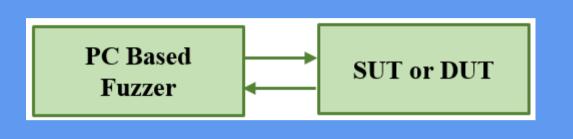
Controller Area Network (CAN)

- commonality for vehicle network and components (ECUs)

FUZZING ELEMENTS OF A CAN DATA PACKET FOR THE TARGET VEHICLE

Item	Range	Description	
CAN Id	{0,1,2,,2047}	All standard message ids	
Payload length	{0,1,2,,8}	Vary message length	
Payload byte	$\{0,1,2,\ldots,256\}$	Vary payload bytes	
Rate	> 0	Vary transmission interval	

Straightforward and robust vehicle communications standard However, designed pre-Internet, pre-Connectivity – designed without security



8

A Windows PC Based CAN Fuzzer

- Simple install
- Easy configuration
- Easy to use GUI
- USB to CAN connection

TABLE I				
AUTOMOTIVE CAN FUZZING TOOLS				

Tool	License	Approach
beStorm	Commercial	Protocol based
Defensics	Commercial	Protocol based
CANoe/booFuzz	Mixed	Design based
Peach	Mixed	Protocol based
Custom software	As required	As required

- Existing fuzzers have a learning curve - They are not designed specifically for CAN

CAN Fuzzer

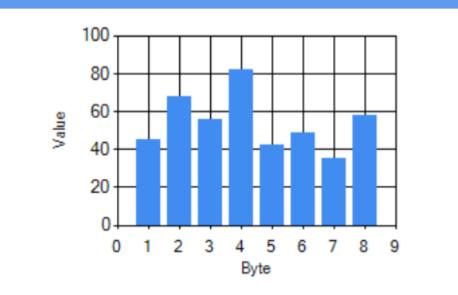
CAN USB Devices:		Message Settin	ngs	
PCAN_USB:FD 1 (51h)		CAN Id Min:	0	Å
		CAN Id Max:	2047	4
		Data Len Min:	0	*
Initialize		Data Len Max:	8	*
Select Baud Rate:		Byte Val Min:	0	*
83.333 kbit/s	*	Byte Val Max:	255	A
95.238 kbit/s 100 kbit/s			Start	1
125 kbit/s 250 kbit/s	H	Info:		
500 kbit/s	-			

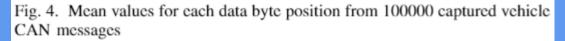
SAMPLE RANDOM CAN PACKET OUTPUT FROM THE FUZZER

Time (ms)	Id	Length	Data
3031.094	000F	6	59 63 BA 5A 77 D5
3032.846	0442	2	AC D3
3035.022	02C4	3	49 01 D8
3036.734	0068	0	
3039.070	0694	5	F5 DA DA 03 A4
3040.854	065A	2	29 95

Example output

Sent to CAN


One of the configuration screens



Checking fuzzer output

Mean byte values from vehicle CAN data

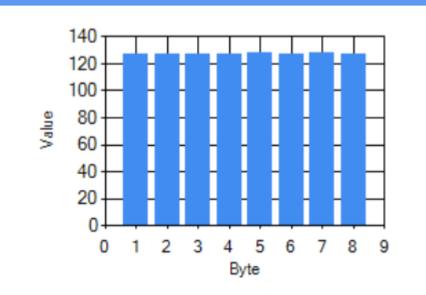
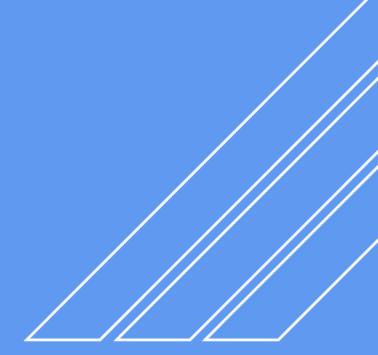



Fig. 5. Mean values for each data byte position from 66144 randomly generated CAN messages

Mean byte values from fuzzer generated CAN data

Running The Fuzzer

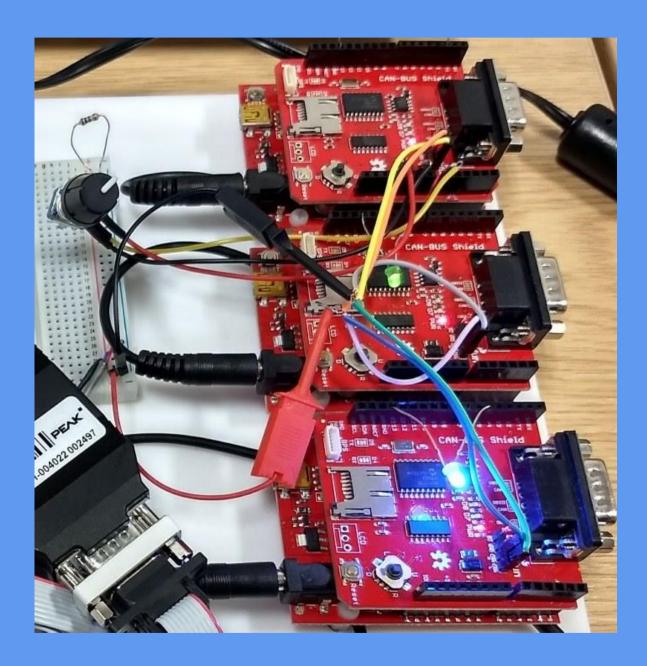
What happens if vehicle systems are not designed to reject fuzzed data?

Running The Fuzzer

What happens if vehicle systems are not designed to reject fuzzed data?

They are not safe!

From - "Experimental Security Analysis of a Modern Automobile"


"In fact, because the range of valid CAN packets is rather small, significant damage can be done by simple fuzzing of packets (i.e., iterative testing of random or partially random packets). Indeed, for attackers seeking indiscriminate disruption, **fuzzing is an effective attack by itself**."

> K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage, "Experimental Security Analysis of a Modern Automobile," in Security and Privacy (SP), 2010 IEEE Symposium on, 2010, pp. 447–462

Test Bench Target

Three Arduino "ECUS" CAN bus CAN to USB for PC Interface

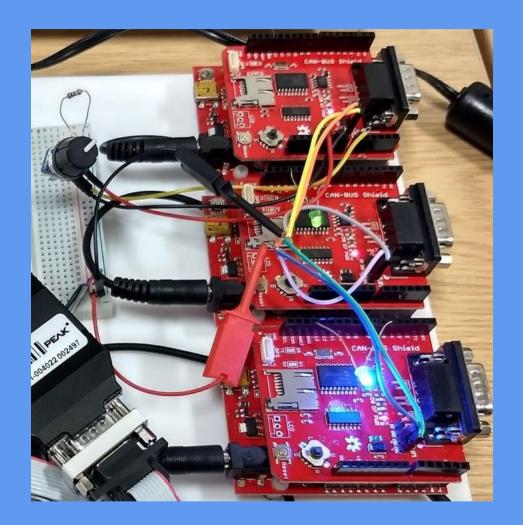
Scenario

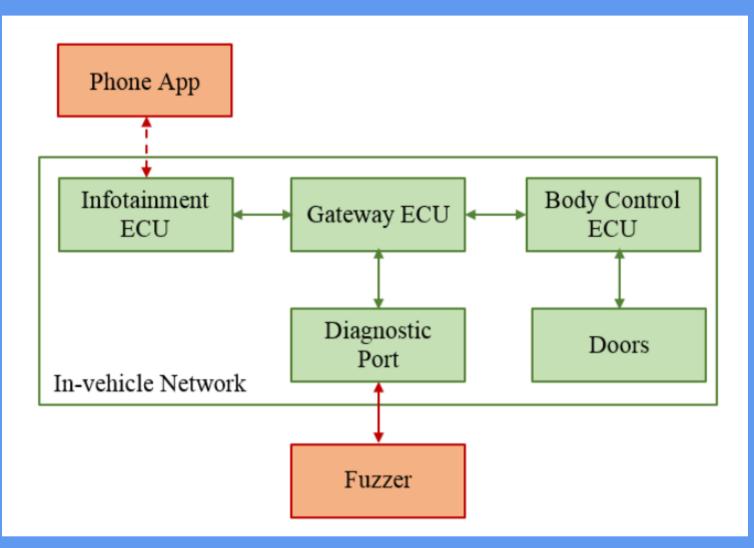
C Doors & Locks Unlocked Doors & Windows	▼ 🔎 🗎 07:00
Tailgate	Window Open
ିହ Lock	ୁ ହ Unlock
Home Map	Car More

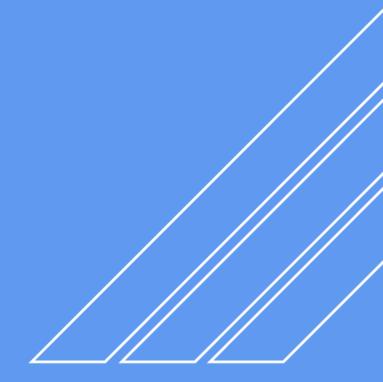
🖷 Single Message Tx E.g. Lock/Unlock —		
PCAN USB Devices: PCAN_USB:FD 1 (51h) Initialize Select Baud Rate: 100 kbit/s 125 kbit/s 250 kbit/s 500 kbit/s	Î	
Tx 1 (E.g. Lock)		
CAN Id 533 215 Length 7 🜩	1 32	
Tx 2 (E.g. Unlock) Dec. Hex. CAN Id 533 215 Length 7 - Bytes 32 95 1 0 0	1 32	

PC Implementation

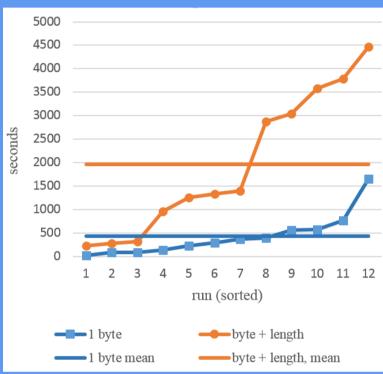
Unlocking via an app



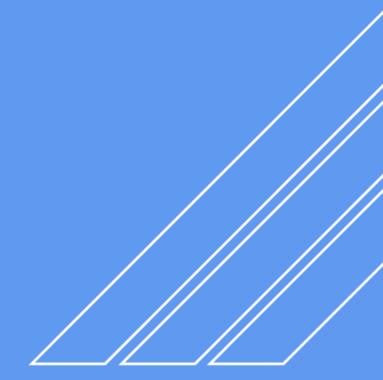



Target of Evaluation

LED on, door unlocked



Fuzzing for Reverse Engineering


Message	Times (s)	Mean (s)
Single id and byte	89, 1650, 373, 400, 223, 143, 773, 292, 21, 559, 572, 80	431
Single id, byte plus data length	3039, 222, 1258, 1330, 314, 277, 959, 3788, 2872, 4472, 3581,	1959
data length	959, 3788, 2872, 4472, 3581,	
0	1394	

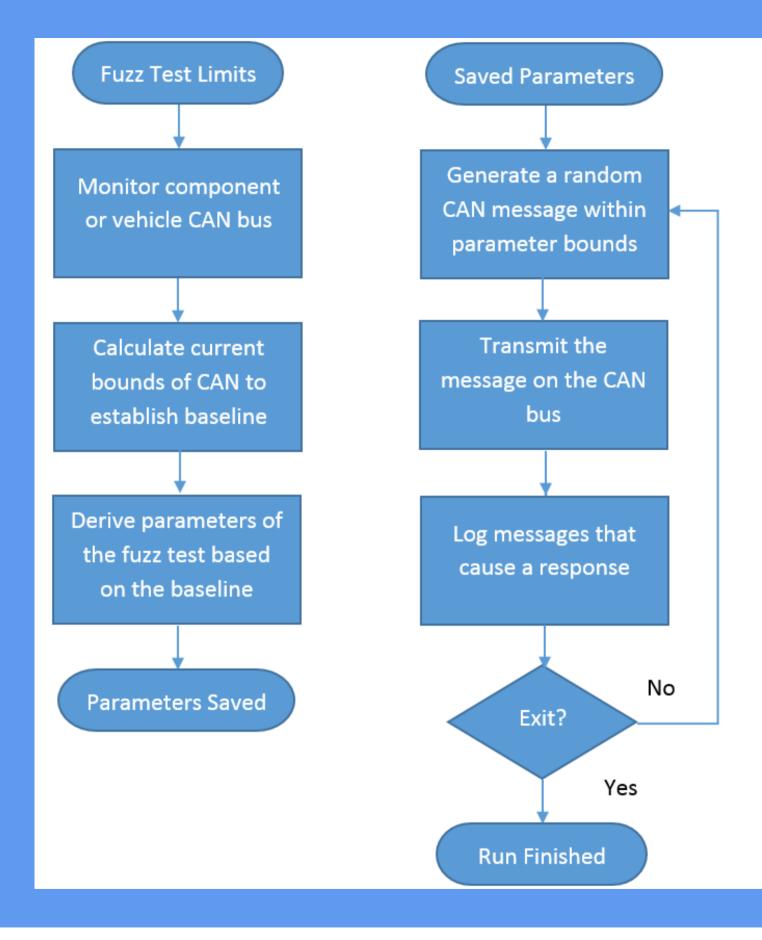
- Fuzzer finds unlock command

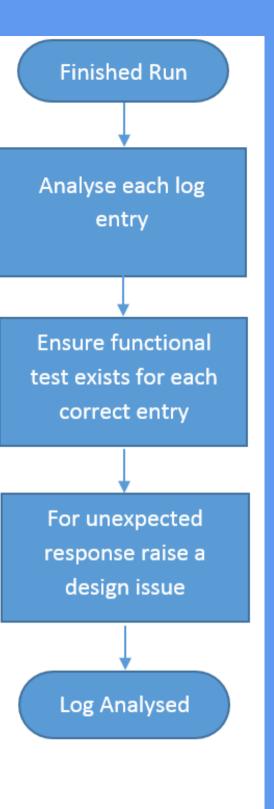
- Changing message increases find time

Pure Random CAN fuzzing not practical

	seconds	days	data bytes
2048	2.048	0.0000237037037	0
524288	524.288	0.006068148148	1
134217728	134217.728	1.553445926	2
34359738368	34359738.37	397.682157	3
8796093022208	8796093022	101806.6322	4
2.2518E+15	2251799813685	26062497.84	5
5.76461E+17	576460752303424	6671999448	6
1.47574E+20	1.47574E+17	1708031858677	7
3.77789E+22	3.77789E+19	437256155821264	8

Not possible to test every CAN message





What Next?

Developing a Fuzz Test Methodology

Uses for Fuzz Test Methods

- *Detection* Finding known ECU, component, or vehicle functionalities. (Reverse engineering.)
- *Discovery* Finding unknown ECU, component, or vehicle functionalities. (Undocumented functions.)
- Intrusion Overcome security mechanisms. (Confidentiality, Integrity, Availability)
- Assurance Ensure confidence in ECU, component, or vehicle specifications. (Maintain a safe state under cyber attack.)



Observations

- Literature
 - Few sources on fuzz testing automotive systems
 - Few how-to and reproducible methods
- A fuzz test is potentially destructive, need manufacturer support
- Fuzzing can break security properties (the CIA triad) - Confidentiality, Integrity, Availability
- Pure fuzz testing not practical, and it must be automated
- Cyber-Physical Systems monitoring must be considered
- A fuzz test is one part of the security assurance solution
- What about sensors, HMI, wireless, V2X? •
 - Scope for further contributions

© HORIBA MIRA Ltd. 2017

