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• Application domain: automotive and space

• Facilitate independent software/hardware updates on
embedded system platforms

• Safety, security, availability

• www.ccc-project.org
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Motivation

• CCC second phase: distributed changes

• Cooperative agents coordination
– Vehicle platooning, unmanned aerial vehicle swarms, robots etc.

– Self-perception, self-action

• Joint view and action

• Share information, redundancy
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Motivation

• Cooperation=efficiency? Redundancy=reliability?

• Nodes might behave differently
– Objective factors: position, environment, configuration

– Faulty behaviors: transient sw/hw error, communication failure,
malicious attack

5°C4 °C3 °C-30°C
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Motivation

• Popular approach: convergence based

• Less explored: distributed agreement algorithm
– Explicit termination criterion (undecided  decided)

– Guarantee of exact consensus

– Well tailored for small groups
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Outline

• An introduction to Byzantine fault tolerance

• Making an agreement

• Trusted subsystem

• Evaluation

• Conclusion and future work
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Byzantine General Problem [2]

• Honest generals and traitors

• Byzantine faults: not only crash

[2] Lamport, L.; Shostak, R.; Pease, M. (1982). "The Byzantine Generals Problem" (PDF). ACM 
Transactions on Programming Languages and Systems. 4 (3): 382–401.
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Byzantine General Problem

n=3
f=1

<attack!> <retreat!>

??????

<attack!>

<retreat!>

<attack!> <attack!>

??????

<attack!>

<retreat!>n≥3f+1 to tolerate f traitors
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PBFT Algorithm [3]

p0

p1

p2

p3

Timeout to change leader

PREPREPARE PREPARE COMMIT VIEWCHANGE NEWVIEW

Normal case Suspect leader

…

[3] Miguel Castro and Barbara Liskov. “Practical Byzantine fault tolerance and proactive 
recovery”. In: ACM Trans- actions on Computer Systems 20.4 (2002), pp. 398–461. 
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PBFT Algorithm 

• Mainly designed for state machine replication
– Powerful machines in data center

– Simply takes leader’s proposal, seldom involves local
non-deterministic values (sensor value) *

* Briefly discussed in PBFT paper
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Outline

• An introduction to Byzantine fault tolerance

• Making an agreement

• Trusted subsystem

• Evaluation

• Open questions
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Agree … on what?

• Follow-command: only leader proposes
Can directly use PBFT algorithm

• Consensus: everyone has its own value
– Discrete: binary decision, leader election, etc.

– Continuous: sensor value
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Fault model: who and what can go wrong

• A group of nodes (n=4 as an example) 

• f<n/3 nodes can be faulty (f=1 in the example)
– Typical Byzantine faults (crash, bit-flip, package loss, malicious 

behavior etc.)

– Wrong sensor value

Even an “intended-to-be-honest” node might be fooled by its
mal-functional sensor

Validity issue: cannot take just a value from single node
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Validity of sensor values

• Value exchange before agreement
– Broadcast own value

– Leader collects as many values as possible (at most n-f)

– Sort and choose the median

• When n ≥ 3f+1

n-f≥ (f+1) correct valuesn-f≥ (f+1) correct values f faulty values

median is “not bad”
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Validity of sensor values

• Collect any (n-f) values, choose the median

• Median validity [8]: the chosen value v is close to the 
median of all correct values (unknown to algorithm)

• Already a tight bound in asynchronous system.

f values

0 n-fact-1
v is within this range

Sorted vector of correct values

f values

the median of correct values

[8] Stolz, David, and Roger Wattenhofer. "Byzantine Agreement with Median Validity." LIPIcs-Leibniz International 
Proceedings in Informatics. Vol. 46. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.
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Validity of sensor values

• Collect any (n-f) values, choose the median

• Property: the chosen value v is close to the median of all 
correct values.

• This is a tight bound in asynchronous system.

f values

0 n-facc-1
v is within this range

Sorted vector of correct values

f values

the median

C is slow -30 3 4

A is slow -30 4 5

B is slow 3 5 +40

C is slow 3 3.5 4

Node A B C D

Measured 
temperature 3 4 5 X

Byzantine!

n=4, f=1, fact =1

Some possible cases:

3 ≤ valid value ≤ 5 


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Agree on sensor value

• Value exchange phase + Agreement algorithm (PBFT)

• Requirement:
– Leader proposes the median of (n-f) values …

– … with a certificate, so that followers can verify

p0

p1

p2

p3

PBFTValue Exchange

verification is necessary
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Sensor value agreement: solution 1

• With digital signature is trivial 

p0

p1

p2

p3
<VALUEi> MEDIAN | <VALUE1><VALUE2>…

Value Exchange

…

PBFT
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Sensor value agreement: solution 2

• Get rid of signature [4]:
– Leader receives (2f+1) echoes of a value -> put it into certificate

– Leader collects (n-f) values in certificate -> propose

– Follower receives (f+1) corresponding echoes for every value in 
certificate -> accepts

p0

p1

p2

p3
VALUE MEDIAN | VALUE1,VALUE2…ECHO

[4] Milosevic, Zarko et al. "Unifying Byzantine consensus algorithms with weak interactive consistency." 
International Conference On Principles Of Distributed Systems. Springer Berlin Heidelberg, 2009.

Value Exchange PBFT
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Sensor value agreement

• The use of signature
 One communication round less

✗ Computationally expensive (for embedded systems)

CPU Network
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Outline

• An introduction to Byzantine fault tolerance

• Making an agreement

• Trusted subsystem

• Evaluation

• Open questions
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Background: recap

• Why 3f+1 nodes required?

• Equivocation: send different values to different recipients

• Can we restrict the ability of Byzantine nodes?

attack! retreat!
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Trusted subsystem

• Assume a special part of system cannot go wrong
– …except for crash faults

– Hardware support in modern CPUs (ARM TrustZone, Intel SGX)

Rich OSRich OS

Trusted 
function
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Trusted subsystem

• Assume a special part of system cannot go wrong
– …except for crash faults

– Hardware support in modern CPUs (ARM TrustZone, Intel SGX)

Rich OS

Trusted 
function
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Trusted subsystem

• As simple as possible

• …but powerful enough

• Trusted monotonic counter + message authentication

• Examples are MinBFT, CheapBFT, Hybster [5,6,7] etc.

[5] Giuliana Santos Veronese et al. “Efficient Byzantine Fault-Tolerance”.  In: IEEE Trans. Computers 62.1 (2013), pp. 16–30. 
[6] Rüdiger Kapitza et al. “CheapBFT: Resource-efficient Byzantine Fault Tolerance”. In: Proceedings of the EuroSys 2012 Conference. 
Ed. by European Chapter of ACM SIGOPS. Switzerland, 2012, pp. 295–308. 
[7] Behl, Johannes et al. "Hybrids on Steroids: SGX-Based High Performance BFT." Proceedings of the Twelfth European Conference 
on Computer Systems. ACM, 2017.
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Trusted subsystem

• All broadcast messages are certified by trusted counter

Rich OSRich OS

id
secret key
counter

message
Trusted monotonic counter +
message authentication
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Trusted subsystem

• All broadcast messages are certified by trusted counter

• After certifying a message, counter increases by 1
Cannot use the same counter to certify two different messages

Rich OSRich OS

id
secret key
counter++

<message|id|counter>σ

Trusted monotonic counter +
message authentication
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Trusted subsystem

• All outgoing messages are certified by trusted counter

• After certifying a message, counter increases by 1
Cannot use the same counter to certify two different messages

• Recipient knows the expected counter and can verify

<attack|i> <retreat|i+1>

OK, attackOK, attack Nope, where is 
message i?

Nope, where is 
message i?

(assume all messages before i are delivered)
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Trusted subsystem

• Cannot equivocate anymore  hybrid fault model
– Only 2f+1 nodes needed

– One less communication round

p0

p1

p2
(VALUE) PROPOSE COMMIT

Timeout to
suspect leader
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Trusted subsystem

• Cannot equivocate anymore  hybrid fault model
– Only 2f+1 nodes needed

– One less communication round

• More benefit: avoid public-private key encryption

– Cannot use other’s id to certificate

– Key won’t be leaked even to host OS

– All trusted subsystems can share one secret key for broadcast

Assume static group, and keys are correctly distributed

<message|id|counter>σ
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Trusted subsystem: a remark of sensor value validity

• Validity issue: required n≥3f+1
– Still (3f+1) value providers, but only (2f+1)  voters, the others are

passive learners

– Or assume known sensor permissible error
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Outline

• An introduction to Byzantine fault tolerance

• Making an agreement

• Trusted subsystem

• Evaluation

• Open questions



SSIV 2017 - Denver 17

Wenbo Xu |  Byzantine Agreement Service for Cooperative Embedded 
Systems | Page 33

Experiment setting

• 4 RaspberryPis
– already support for ARM TrustZone…

– …but as a preliminary work, we use a software simulation

– Inject 2ms extra delay for each encryption operation [6]

• Ad-hoc wireless communication, ping ≈ 8ms

• Two agreement scenarios:
– Follow-command: only leader proposes something

– Consensus: everyone has its own value

Thermometer, reading time ≈ 850ms, not counted for agreement
time

[6] Rüdiger Kapitza et al. “CheapBFT: Resource-efficient Byzantine Fault Tolerance”. In: Proceedings of the EuroSys
2012 Conference. Ed. by European Chapter of ACM SIGOPS. Switzerland, 2012, pp. 295–308. 
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Experiment result

0

100

200

300

400

500

600

700

800

900

Follow-command
No TS

Follow-command
With TS

Consensus
No TS

Signature

Consensus
No TS

No signature

Consensus
With TS

Signature(HMAC)

Total dalay
(ms)

Max processing delay

Min transmission delay

• Digital signature results in much higher delay

• Trusted subsystem is efficient in both scenarios
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Outline

• An introduction to Byzantine fault tolerance

• Making an agreement

• Trusted subsystem

• Evaluation

• Conclusion and future work
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Conclusion and future work

• Provide agreement-as-a-service for embedded systems

• Sensor value agreement with value validity

• Using trusted subsystem to decrease overhead
– Reduce from 3f+1 to 2f+1 nodes, and one less message round

– MAC instead of digital signature

• Next steps: 
– Implement trusted subsystem based on ARM TrustZone

– Network stack support in target application

– Real-time requirement

– Compare & combine with convergence based approaches
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Conclusion and future work

• Provide agreement-as-a-service for embedded systems

• Sensor value agreement with value validity

• Using trusted subsystem to decrease overhead
– Reduce from 3f+1 to 2f+1 nodes, and one less message round

– MAC instead of digital signature

• Next steps: 
– More lightweight code base targeted for embedded system

– Implement trusted subsystem based on ARM TrustZone

– Network stack support

– Real-time requirement

– Comparison & combine with convergence based approaches

Thank you for your attention!
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Motivation

• Popular approach: convergence based

• Good scalability in large groups

• E.g. data fusion, speed control of platooning

[1] W. Ren, R. W. Beard and E. M. Atkins, "Information consensus in 
multivehicle cooperative control," in IEEE Control Systems, vol. 27, no. 2, pp. 
71-82, April 2007.
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Byzantine General Problems

• Asynchronous system

<attack!> <retreat!>

??????

<attack!> <attack!>

??????

<attack!>
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Byzantine fault tolerance

• Synchronous vs asynchronous system model

• Known results:
– Synchronous system + message signature: n ≥ 2f+1 nodes

– FLP impossibility: No consensus can be achieved in asynchronous
system, even if only one node can crash.

Work around: algorithm runs without assuming synchrony, but has
different guarantees under two conditions.

– (Partially-) Asynchronous system: n ≥ 3f+1 nodes
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Validity of sensor values

• Collect any (n-f) values, choose the median

• Property: the chosen value v is close to the median of all 
correct values.

• This is a tight bound in asynchronous system.

f values

0 n-facc-1
v is within this range

Sorted vector of correct values

f values

the median

n=4, f=1, fact =0

3 4 ≤ valid value ≤ 5 /

Node A B C D

Measured 
temperature 3 4 5 6

C is slow 3 4 6

A is slow 4 5 6

B is slow 3 5 6

Some possible cases:


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An explain of tight bound

• Run the same algorithm 3 times

• The same value should be decided

t+1 n

n-t1

n+t2t+1

faulty

faulty

Actually participating processes

median validity range

Slow processes Slow processes

median validity range

median validity range

2 3 4 5 6 x(crash)

1 (slow) 2 3 4 5 6 (faulty)

2 (faulty) 3 4 5 6 7 (slow)

median validity range

n=6, f=1
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Trusted subsystem

• Assume a part of system cannot go wrong
– …except for crash faults

– Enabled by trusted hardware in modern CPUs (ARM TrustZone,
Intel SGX)

Hardware

Rich OS

AppAppApp
Trusted

Function
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Trusted subsystem

• Assume a part of system cannot go wrong
– …except for crash faults

– Enabled by trusted hardware in modern CPUs (ARM TrustZone,
Intel SGX)

Hardware

Rich OS

AppAppApp
Trusted

Function
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Trusted subsystem: ARM TrustZone

• Tight control of access to secure world (secure monitor call, 
hardware exceptions)

• Remote attestation: is the function correctly installed on the
trusted subsystem?
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Experiment result

0

100
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400
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600
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800

900

Follow-command
No TS

Follow-command
With TS

Consensus
No TS

Signature

Consensus
No TS

No signature

Consensus
With TS

Signature(HMAC)

Max processing delay

Min transmission delay
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Existing core OS support: Inadequate 

• IP multicast just doesn’t work...
• Amazon AWS disables IPMC and tunnels over TCP 

• TCP is the main option, but it has some issues:
• No support for reliable transfer to multiple receivers 

• Uncoordinated model for breaking connections on failure 

• Byte stream model is mismatched to RDMA 

Ken Birman: Evolution of fault tolerance, SOSP History Day 2015
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Timing issue

• When periodically agreeing, how to know a message 
belongs to the current period?
– Replay attack; Delay attack;

• Timestampped message
– Reasonable in vehicular communication

– But not favorable by all people
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Timing issue

• Sequence number? How to determine the first period?

p0

p1

p2

p3

1 2 3 4

start the first instance
1 2
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Timing issue

• Sequence number? How to determine the first period?

• Ask the others for a calibration?

p0

p1

p2

p3

1 2 3 4

start the first instance
1 2 3 4

what’s your
current sn?

It’s 4

“One-way delay barrier”
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Difference with State Machine Replication

• Limited computation resource & energy

• Communication
– TCP/IP not suitable. New network stack support needed

– Broadcast support

– Network issue, handled in which layer?

• Not require high throughput. Latency more important

• Checkpoint, Ordered execution



SSIV 2017 - Denver 27

Wenbo Xu |  Byzantine Agreement Service for Cooperative Embedded 
Systems | Page 53

Byzantine fault tolerance

• Synchronous vs asynchronous system model:
– Synchronous system: message transmission and processing delay

has a known upper bound. can detect crashed node

– Asynchronous system: no upper bound of delay

correct faulty

correct and fast correct but slow

faulty
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Difference with State Machine Replication: Philosophy

• SMR:
– Require fault tolerance -> Replication -> Agreement

– Agreement serves for fault tolerance, so itself must be FT

– Can inherit the fault model

• Cooperative system 
– Agreement is an intrinsic service

– Safety requirement, fault model reasonable?

 Maybe that’s why convergence approaches dominate?


