
SSIV 2017 - Denver 1

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Byzantine Agreement Service for
Cooperative Embedded Systems

Wenbo Xu, Martin Wegner, Lars Wolf, Rüdiger Kapitza

The 3rd International Workshop on Safety and Security of Intelligent

Vehicles (SSIV) co-located with DSN, Denver, 26.June. 2017

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 2

• Application domain: automotive and space

• Facilitate independent software/hardware updates on
embedded system platforms

• Safety, security, availability

• www.ccc-project.org

SSIV 2017 - Denver 2

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 3

Motivation

• CCC second phase: distributed changes

• Cooperative agents coordination
– Vehicle platooning, unmanned aerial vehicle swarms, robots etc.

– Self-perception, self-action

• Joint view and action

• Share information, redundancy

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 4

Motivation

• Cooperation=efficiency? Redundancy=reliability?

• Nodes might behave differently
– Objective factors: position, environment, configuration

– Faulty behaviors: transient sw/hw error, communication failure,
malicious attack

5°C4 °C3 °C-30°C

SSIV 2017 - Denver 3

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 5

Motivation

• Popular approach: convergence based

• Less explored: distributed agreement algorithm
– Explicit termination criterion (undecided  decided)

– Guarantee of exact consensus

– Well tailored for small groups

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 6

Outline

• An introduction to Byzantine fault tolerance

• Making an agreement

• Trusted subsystem

• Evaluation

• Conclusion and future work

SSIV 2017 - Denver 4

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 7

Byzantine General Problem [2]

• Honest generals and traitors

• Byzantine faults: not only crash

[2] Lamport, L.; Shostak, R.; Pease, M. (1982). "The Byzantine Generals Problem" (PDF). ACM
Transactions on Programming Languages and Systems. 4 (3): 382–401.

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 8

Byzantine General Problem

n=3
f=1

<attack!> <retreat!>

??????

<attack!>

<retreat!>

<attack!> <attack!>

??????

<attack!>

<retreat!>n≥3f+1 to tolerate f traitors

SSIV 2017 - Denver 5

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 9

PBFT Algorithm [3]

p0

p1

p2

p3

Timeout to change leader

PREPREPARE PREPARE COMMIT VIEWCHANGE NEWVIEW

Normal case Suspect leader

…

[3] Miguel Castro and Barbara Liskov. “Practical Byzantine fault tolerance and proactive
recovery”. In: ACM Trans- actions on Computer Systems 20.4 (2002), pp. 398–461.

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 10

PBFT Algorithm

• Mainly designed for state machine replication
– Powerful machines in data center

– Simply takes leader’s proposal, seldom involves local
non-deterministic values (sensor value) *

* Briefly discussed in PBFT paper

SSIV 2017 - Denver 6

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 11

Outline

• An introduction to Byzantine fault tolerance

• Making an agreement

• Trusted subsystem

• Evaluation

• Open questions

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 12

Agree … on what?

• Follow-command: only leader proposes
Can directly use PBFT algorithm

• Consensus: everyone has its own value
– Discrete: binary decision, leader election, etc.

– Continuous: sensor value

SSIV 2017 - Denver 7

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 13

Fault model: who and what can go wrong

• A group of nodes (n=4 as an example)

• f<n/3 nodes can be faulty (f=1 in the example)
– Typical Byzantine faults (crash, bit-flip, package loss, malicious

behavior etc.)

– Wrong sensor value

Even an “intended-to-be-honest” node might be fooled by its
mal-functional sensor

Validity issue: cannot take just a value from single node

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 14

Validity of sensor values

• Value exchange before agreement
– Broadcast own value

– Leader collects as many values as possible (at most n-f)

– Sort and choose the median

• When n ≥ 3f+1

n-f≥ (f+1) correct valuesn-f≥ (f+1) correct values f faulty values

median is “not bad”

SSIV 2017 - Denver 8

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 15

Validity of sensor values

• Collect any (n-f) values, choose the median

• Median validity [8]: the chosen value v is close to the
median of all correct values (unknown to algorithm)

• Already a tight bound in asynchronous system.

f values

0 n-fact-1
v is within this range

Sorted vector of correct values

f values

the median of correct values

[8] Stolz, David, and Roger Wattenhofer. "Byzantine Agreement with Median Validity." LIPIcs-Leibniz International
Proceedings in Informatics. Vol. 46. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 16

Validity of sensor values

• Collect any (n-f) values, choose the median

• Property: the chosen value v is close to the median of all
correct values.

• This is a tight bound in asynchronous system.

f values

0 n-facc-1
v is within this range

Sorted vector of correct values

f values

the median

C is slow -30 3 4

A is slow -30 4 5

B is slow 3 5 +40

C is slow 3 3.5 4

Node A B C D

Measured
temperature 3 4 5 X

Byzantine!

n=4, f=1, fact =1

Some possible cases:

3 ≤ valid value ≤ 5



SSIV 2017 - Denver 9

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 17

Agree on sensor value

• Value exchange phase + Agreement algorithm (PBFT)

• Requirement:
– Leader proposes the median of (n-f) values …

– … with a certificate, so that followers can verify

p0

p1

p2

p3

PBFTValue Exchange

verification is necessary

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 18

Sensor value agreement: solution 1

• With digital signature is trivial

p0

p1

p2

p3
<VALUEi> MEDIAN | <VALUE1><VALUE2>…

Value Exchange

…

PBFT

SSIV 2017 - Denver 10

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 19

Sensor value agreement: solution 2

• Get rid of signature [4]:
– Leader receives (2f+1) echoes of a value -> put it into certificate

– Leader collects (n-f) values in certificate -> propose

– Follower receives (f+1) corresponding echoes for every value in
certificate -> accepts

p0

p1

p2

p3
VALUE MEDIAN | VALUE1,VALUE2…ECHO

[4] Milosevic, Zarko et al. "Unifying Byzantine consensus algorithms with weak interactive consistency."
International Conference On Principles Of Distributed Systems. Springer Berlin Heidelberg, 2009.

Value Exchange PBFT

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 20

Sensor value agreement

• The use of signature
 One communication round less

✗ Computationally expensive (for embedded systems)

CPU Network

SSIV 2017 - Denver 11

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 21

Outline

• An introduction to Byzantine fault tolerance

• Making an agreement

• Trusted subsystem

• Evaluation

• Open questions

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 22

Background: recap

• Why 3f+1 nodes required?

• Equivocation: send different values to different recipients

• Can we restrict the ability of Byzantine nodes?

attack! retreat!

SSIV 2017 - Denver 12

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 23

Trusted subsystem

• Assume a special part of system cannot go wrong
– …except for crash faults

– Hardware support in modern CPUs (ARM TrustZone, Intel SGX)

Rich OSRich OS

Trusted
function

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 24

Trusted subsystem

• Assume a special part of system cannot go wrong
– …except for crash faults

– Hardware support in modern CPUs (ARM TrustZone, Intel SGX)

Rich OS

Trusted
function

SSIV 2017 - Denver 13

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 25

Trusted subsystem

• As simple as possible

• …but powerful enough

• Trusted monotonic counter + message authentication

• Examples are MinBFT, CheapBFT, Hybster [5,6,7] etc.

[5] Giuliana Santos Veronese et al. “Efficient Byzantine Fault-Tolerance”. In: IEEE Trans. Computers 62.1 (2013), pp. 16–30.
[6] Rüdiger Kapitza et al. “CheapBFT: Resource-efficient Byzantine Fault Tolerance”. In: Proceedings of the EuroSys 2012 Conference.
Ed. by European Chapter of ACM SIGOPS. Switzerland, 2012, pp. 295–308.
[7] Behl, Johannes et al. "Hybrids on Steroids: SGX-Based High Performance BFT." Proceedings of the Twelfth European Conference
on Computer Systems. ACM, 2017.

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 26

Trusted subsystem

• All broadcast messages are certified by trusted counter

Rich OSRich OS

id
secret key
counter

message
Trusted monotonic counter +
message authentication

SSIV 2017 - Denver 14

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 27

Trusted subsystem

• All broadcast messages are certified by trusted counter

• After certifying a message, counter increases by 1
Cannot use the same counter to certify two different messages

Rich OSRich OS

id
secret key
counter++

<message|id|counter>σ

Trusted monotonic counter +
message authentication

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 28

Trusted subsystem

• All outgoing messages are certified by trusted counter

• After certifying a message, counter increases by 1
Cannot use the same counter to certify two different messages

• Recipient knows the expected counter and can verify

<attack|i> <retreat|i+1>

OK, attackOK, attack Nope, where is
message i?

Nope, where is
message i?

(assume all messages before i are delivered)

SSIV 2017 - Denver 15

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 29

Trusted subsystem

• Cannot equivocate anymore  hybrid fault model
– Only 2f+1 nodes needed

– One less communication round

p0

p1

p2
(VALUE) PROPOSE COMMIT

Timeout to
suspect leader

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 30

Trusted subsystem

• Cannot equivocate anymore  hybrid fault model
– Only 2f+1 nodes needed

– One less communication round

• More benefit: avoid public-private key encryption

– Cannot use other’s id to certificate

– Key won’t be leaked even to host OS

– All trusted subsystems can share one secret key for broadcast

Assume static group, and keys are correctly distributed

<message|id|counter>σ

SSIV 2017 - Denver 16

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 31

Trusted subsystem: a remark of sensor value validity

• Validity issue: required n≥3f+1
– Still (3f+1) value providers, but only (2f+1) voters, the others are

passive learners

– Or assume known sensor permissible error

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 32

Outline

• An introduction to Byzantine fault tolerance

• Making an agreement

• Trusted subsystem

• Evaluation

• Open questions

SSIV 2017 - Denver 17

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 33

Experiment setting

• 4 RaspberryPis
– already support for ARM TrustZone…

– …but as a preliminary work, we use a software simulation

– Inject 2ms extra delay for each encryption operation [6]

• Ad-hoc wireless communication, ping ≈ 8ms

• Two agreement scenarios:
– Follow-command: only leader proposes something

– Consensus: everyone has its own value

Thermometer, reading time ≈ 850ms, not counted for agreement
time

[6] Rüdiger Kapitza et al. “CheapBFT: Resource-efficient Byzantine Fault Tolerance”. In: Proceedings of the EuroSys
2012 Conference. Ed. by European Chapter of ACM SIGOPS. Switzerland, 2012, pp. 295–308.

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 34

Experiment result

0

100

200

300

400

500

600

700

800

900

Follow-command
No TS

Follow-command
With TS

Consensus
No TS

Signature

Consensus
No TS

No signature

Consensus
With TS

Signature(HMAC)

Total dalay
(ms)

Max processing delay

Min transmission delay

• Digital signature results in much higher delay

• Trusted subsystem is efficient in both scenarios

SSIV 2017 - Denver 18

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 35

Outline

• An introduction to Byzantine fault tolerance

• Making an agreement

• Trusted subsystem

• Evaluation

• Conclusion and future work

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 36

Conclusion and future work

• Provide agreement-as-a-service for embedded systems

• Sensor value agreement with value validity

• Using trusted subsystem to decrease overhead
– Reduce from 3f+1 to 2f+1 nodes, and one less message round

– MAC instead of digital signature

• Next steps:
– Implement trusted subsystem based on ARM TrustZone

– Network stack support in target application

– Real-time requirement

– Compare & combine with convergence based approaches

SSIV 2017 - Denver 19

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 37

Conclusion and future work

• Provide agreement-as-a-service for embedded systems

• Sensor value agreement with value validity

• Using trusted subsystem to decrease overhead
– Reduce from 3f+1 to 2f+1 nodes, and one less message round

– MAC instead of digital signature

• Next steps:
– More lightweight code base targeted for embedded system

– Implement trusted subsystem based on ARM TrustZone

– Network stack support

– Real-time requirement

– Comparison & combine with convergence based approaches

Thank you for your attention!

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 38

References

[1] W. Ren, R. W. Beard and E. M. Atkins, "Information consensus in multivehicle cooperative
control," in IEEE Control Systems, vol. 27, no. 2, pp. 71-82, April 2007.

[2] Lamport, L.; Shostak, R.; Pease, M. (1982). "The Byzantine Generals Problem" (PDF).
ACM Transactions on Programming Languages and Systems. 4 (3): 382–401.

[3] Miguel Castro and Barbara Liskov. “Practical Byzantine fault tolerance and proactive
recovery”. In: ACM Trans- actions on Computer Systems 20.4 (2002), pp. 398–461.

[4] Milosevic, Zarko et al. "Unifying Byzantine consensus algorithms with weak interactive
consistency." International Conference On Principles Of Distributed Systems. Springer Berlin
Heidelberg, 2009.

[5] Giuliana Santos Veronese et al. “Efficient Byzantine Fault-Tolerance”. In: IEEE Trans.
Computers 62.1 (2013), pp. 16–30.

[6] Rüdiger Kapitza et al. “CheapBFT: Resource-efficient Byzantine Fault Tolerance”. In:
Proceedings of the EuroSys 2012 Conference. Ed. by European Chapter of ACM SIGOPS.
Switzerland, 2012, pp. 295–308.

[7] Behl, Johannes et al. "Hybrids on Steroids: SGX-Based High Performance BFT."
Proceedings of the Twelfth European Conference on Computer Systems. ACM, 2017.

[8] Stolz, David, and Roger Wattenhofer. "Byzantine Agreement with Median Validity." LIPIcs-
Leibniz International Proceedings in Informatics. Vol. 46. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

SSIV 2017 - Denver 20

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 39

Motivation

• Popular approach: convergence based

• Good scalability in large groups

• E.g. data fusion, speed control of platooning

[1] W. Ren, R. W. Beard and E. M. Atkins, "Information consensus in
multivehicle cooperative control," in IEEE Control Systems, vol. 27, no. 2, pp.
71-82, April 2007.

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 40

Byzantine General Problems

• Asynchronous system

<attack!> <retreat!>

??????

<attack!> <attack!>

??????

<attack!>

SSIV 2017 - Denver 21

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 41

Byzantine fault tolerance

• Synchronous vs asynchronous system model

• Known results:
– Synchronous system + message signature: n ≥ 2f+1 nodes

– FLP impossibility: No consensus can be achieved in asynchronous
system, even if only one node can crash.

Work around: algorithm runs without assuming synchrony, but has
different guarantees under two conditions.

– (Partially-) Asynchronous system: n ≥ 3f+1 nodes

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 42

Validity of sensor values

• Collect any (n-f) values, choose the median

• Property: the chosen value v is close to the median of all
correct values.

• This is a tight bound in asynchronous system.

f values

0 n-facc-1
v is within this range

Sorted vector of correct values

f values

the median

n=4, f=1, fact =0

3 4 ≤ valid value ≤ 5 /

Node A B C D

Measured
temperature 3 4 5 6

C is slow 3 4 6

A is slow 4 5 6

B is slow 3 5 6

Some possible cases:



SSIV 2017 - Denver 22

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 43

An explain of tight bound

• Run the same algorithm 3 times

• The same value should be decided

t+1 n

n-t1

n+t2t+1

faulty

faulty

Actually participating processes

median validity range

Slow processes Slow processes

median validity range

median validity range

2 3 4 5 6 x(crash)

1 (slow) 2 3 4 5 6 (faulty)

2 (faulty) 3 4 5 6 7 (slow)

median validity range

n=6, f=1

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 44

Trusted subsystem

• Assume a part of system cannot go wrong
– …except for crash faults

– Enabled by trusted hardware in modern CPUs (ARM TrustZone,
Intel SGX)

Hardware

Rich OS

AppAppApp
Trusted

Function

SSIV 2017 - Denver 23

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 45

Trusted subsystem

• Assume a part of system cannot go wrong
– …except for crash faults

– Enabled by trusted hardware in modern CPUs (ARM TrustZone,
Intel SGX)

Hardware

Rich OS

AppAppApp
Trusted

Function

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 46

Trusted subsystem: ARM TrustZone

• Tight control of access to secure world (secure monitor call,
hardware exceptions)

• Remote attestation: is the function correctly installed on the
trusted subsystem?

SSIV 2017 - Denver 24

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 47

Experiment result

0

100

200

300

400

500

600

700

800

900

Follow-command
No TS

Follow-command
With TS

Consensus
No TS

Signature

Consensus
No TS

No signature

Consensus
With TS

Signature(HMAC)

Max processing delay

Min transmission delay

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 48

Existing core OS support: Inadequate

• IP multicast just doesn’t work...
• Amazon AWS disables IPMC and tunnels over TCP

• TCP is the main option, but it has some issues:
• No support for reliable transfer to multiple receivers

• Uncoordinated model for breaking connections on failure

• Byte stream model is mismatched to RDMA

Ken Birman: Evolution of fault tolerance, SOSP History Day 2015

SSIV 2017 - Denver 25

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 49

Timing issue

• When periodically agreeing, how to know a message
belongs to the current period?
– Replay attack; Delay attack;

• Timestampped message
– Reasonable in vehicular communication

– But not favorable by all people

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 50

Timing issue

• Sequence number? How to determine the first period?

p0

p1

p2

p3

1 2 3 4

start the first instance
1 2

SSIV 2017 - Denver 26

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 51

Timing issue

• Sequence number? How to determine the first period?

• Ask the others for a calibration?

p0

p1

p2

p3

1 2 3 4

start the first instance
1 2 3 4

what’s your
current sn?

It’s 4

“One-way delay barrier”

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 52

Difference with State Machine Replication

• Limited computation resource & energy

• Communication
– TCP/IP not suitable. New network stack support needed

– Broadcast support

– Network issue, handled in which layer?

• Not require high throughput. Latency more important

• Checkpoint, Ordered execution

SSIV 2017 - Denver 27

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 53

Byzantine fault tolerance

• Synchronous vs asynchronous system model:
– Synchronous system: message transmission and processing delay

has a known upper bound. can detect crashed node

– Asynchronous system: no upper bound of delay

correct faulty

correct and fast correct but slow

faulty

Wenbo Xu | Byzantine Agreement Service for Cooperative Embedded
Systems | Page 54

Difference with State Machine Replication: Philosophy

• SMR:
– Require fault tolerance -> Replication -> Agreement

– Agreement serves for fault tolerance, so itself must be FT

– Can inherit the fault model

• Cooperative system
– Agreement is an intrinsic service

– Safety requirement, fault model reasonable?

 Maybe that’s why convergence approaches dominate?

