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Motivation - Rationale s
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O The importance of autonomy
O Integrate UAVs into the National Airspace System
O UAVs must function as if there were a pilot on-board
0 UAVs must demonstrate ELOS comparable to those of manned aviation
O UAVs must have on-board sense-and-avoid/see-and-avoid systems
O UAVs must have failure recovery capabilities that go beyond the
nominal/backup control system
O Goal: Manned — unmanned aviation flying / sharing the same airspace
O Unmanned formations
O Manned — unmanned formations
O Mid-air collision avoidance
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UAV Industry

Fortune - “An estimated 30,000 commercial and civil drones could
be in the skies in the U.S. by 2020, according to the Federal Aviation
Administration (FAA). The Association for Unmanned Vehicle
Systems International (AUVSI) estimates that between 2015 and
2025, the drone industry will create 100,000 jobs and contribute $82
billion to the U.S. economy.”
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Unmanned Aircraft Systems (UAS) Integration in the
National Airspace System (NAS) Project
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There is Nothing “Unmanned” in UAS

UNMANNED SYSTEMS BESEARCH INSTITUTE

Global Hawk Predator
® Pilots 6%  go
8% 5%

B Sensor
Operations

m Mantainers

® Exploiters

m Ciher

300 per CAP 163 per CAP

Fgure 41 Manning Unmanned Platforms is a Key Staffing Problem

Objective: 4-1 ratio to become 1-4, that is, one operator, 4 UAS.
Human-in-the-loop (U.S. Air Force)
Human-on-the-loop (U.S. Army)
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MQ-9 Reaper AVOs

 Must design effective / efficient HMIs to reduce AVO workload.

 Requires automation progression - decision making shifts to the ‘machine’
 High confidence systems

 Challenge: Quest for autonomy

—> iff (if and only if) the above is ‘accepted’, and if the roadmap to integration into the
NAS is ‘develoned’ then UAS will be fullv intearated into the national
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FAA regulations for UAS operating in the NAS state that they
must provide an “...equivalent level of safety comparable to see-and-
avoid aerial requirements for manned aircraft”. They should function ‘as if
there were a pilot on-board’!!!

The challenge:

“Design and build UAS that comply with VFR
and later IFR requirements”

Compliance with requirements pertaining to:
O See and avoid

O Right-of-way rules

L ATC communication

O Airspace classes

1 NOTAMs

UNIVERSITYor
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 Use “Redundancy” to increase safety

e As such:
— See-and-avoid
— Sense-and-avoid

functioning as one system and also independently

Quote from FAA Rep: “THIs IS A NECESSARY BUT NOT
SUFFICIENT CONDITION”

UNIVERSITYor
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Motivation - Rationale

—
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Short Range RADAR(s)

E /Long Range RADAR

=" o Assumptions:
e = Non maneuvering target

Ll = 12.5 sec decision delay (from AF -MACA)

Example collision scenario:
500 knot closing speed (250 kts each)
500 ft miss distance

Moderate bank angle maneuver of 15 ¢
(11 sec needed to complete maneuver)

Total Time :

n values
3 MidAir
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*Evasion flight path depends on
the flight characteristics of the
threat aircraft(s)

In the U.S. the first to fly will be UAVs with MTOW < 25

Must demonstrate ELOS comparable to those of
manned aviation (FAA)
Must operate “as if there were a pilot on-board”
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Sample of Applications

Power line inspection
Pipeline inspection
Fire detection

Traffic monitoring
Ship inspection
Search and rescue
Aerial photography
SWAT support
Imaging and mapping
ISR

Chemical spraying

Hazard monitoring

Mine inspection

Dam Inspection

Watering restriction support
Border patrol

Police surveillance

Harbor patrol

Earth quake inspection
Crop dusting

Night vision

Anomaly detection/prevention

W‘ UNIVERSITYo
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Real-time traffic
planning and control

Model Simulation

A \4

Data Collection by UAV Data Collection by
Mounted Video Infra-red detectors, 5
Cameras other sources ' Real-time update of
simulation parameters
l v
Image Analysis | Obtain Observed Parameters
“| (Vehicle type, density, flow,
etc)

\4
Historical Data

Interface

Traffic monitoring: Framework for incorporating real-time
data in simulation models

UNIVERSITYor

DENVER

©



N

’ — p—
UNIVERSITY OF DENVER V

577

UNMANNED SYSTEMS BESEARCH INSTITUTE

Traffic Monitoring -1
Traffic Monitoring — 2
Autotracking

Multiple Monitoring
Algorithm Works — Racel
Algorithm Works — Race2 e e
Fire Detection — 2 (With fixed-wing UAV) il
Formation - Ellipse :
Formation: UGV — Helicopter
Landing Platform

Hovering to land

Circulation Control
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DOD ROADMAP - AUTONOMY

Autonomous Control Levels

Fully Autonomous Swarms = 10
Group Strategic Goals f- 9

QUCAR Goal

Distributed Control = 8

Group Tactical Goals = 7

Group Tactical Replan = 6 J-UCAS Goal

Group Coordination = 5
Onboard Route Replan |- 4

Adapt to Failures & Flight Conditions |~ 3
Global Hawk, Shadow,

9 ER/MP, and Fire Scout

Real Time Health/Diagnosis = 2 Q Predator

Pioneer
Remotely Guided = 1

| | | 1 | | 1
1955 1965 1975 1985 1995 2005 2015 2025

TREND IN UA AUTONOMY.
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The Challenge of Autonomy (U.S. DoD) %
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Framework for the Design and Evaluation

of Autonomous Systems
Coanitive Echelon View

As component agent and roles increas

Complex System Trades Space View
in autonomy, critical issues shift to
relationships and coordination across
roles and echelons

whether explicitly made or not, system
level performance trades result from
design choices about where and how
to inject autonomy
Mission Dynamics View .
n . Responsibility: Short-Term vs. Long-Term Goals |
ﬂﬁslﬂﬂ where cognitive functions T T
g) ATIIATAE T can EISSIS'[ erspectives: Local vs, Global Views
_g . | Impact: Centralized vs. Distributed
t; SECTION \ | ; Plans: Efficiency vs. Thoroughness
- INITIATION Fitness: Optimality vs. Resilience
g Plan, il'ttll.ldil‘tg delegalinn and bounds A
= VEHICLE 8
o | | : "
: IMPLEMENTATION E _{
t |/
Action failures, ol § -
Obsolete portions of plans L
Mission Complete

Vanation from nominal conditions

TERMINATION

Figure 1-1 Framework for the Design and Evaluation of Autonomous Systems
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The Challenge of Autonomy (U.S. DoD) %

Missed Opportunities, Needed Technology Developments
Mission / h
Cnmlrne;nder Scenario Scenario Information/
\ Evaculive: Planning & Asses?mem & Network '
Officer, Intel Decision Understanding Management
2 Analyst Making ~
?,_g} ?? Support Mission Failure Multi-agent,
= ©  Staff Planning & Anticipation Communication, Adaptive
O Decision and Collaboration & Capacity
< % ; Making Replanning
) Section Leader, ' : _ B
Team Lead, Team . GN&C I Fault Detection & Situational
Members - Vehicle Health Awareness
Sensors & Management |
Pilot, Sensor Weapons ' - Communications l
Operator \ Management - )

\ Under-utilized existing capability [ 8 Open technical challenges needing investment
Figure 1-3 Status of Technology Deployment and Remaining Challenges
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(Our) Proposed Architecture
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Tier 5 .. ..
Mission objectives .
J : € Human interface
and planning
Tier 4
Path Planning  [€ *4
Tier 3 .
Controller DR Dynamics
Bank Recalculator
|
Tier 2 i |
ler Critical
Emergency Emergency .
Failure
Controller Planner .
Detection
Tier 1 €
Coll. Avoid “Sense —
Sensors (EQ, > and- avoid” —->’
SAR, Ac) system
Baseline i i N Unmanned
Controller Aircraft
INS Sensors N Sensor
(GPS, IMU) “|  Fusion

UAS
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(Our) Proposed Architecture

Emergency Management System (EMS)
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Basic Maneuvers (Basic navigation)

(Example) Helicopter Maneuvers

Aggressive Maneuvers (acrobatics)

Take-off/Landing
Forward Flight
Hovering

Turns and side slips o ramictigh.conigh,manaerakets
Taxiing

Departure flight (reverse)
Waypoint navigation

Flips

Loops

Autorotation landing
Avoidance

http://www.modelairplanenews.com/blog/2012/10/02/master-the-cuban-8/

Thus, controller design IS a challenge @ BERTER
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Helicopter Failure Scenarios

Possible failure scenarios: o g—
— Total engine failure ’
— Sensor failures
— Controller failure
— Structural failure

To make system fail-safe:
— Separate navigational and stabilization sensors

— Install a servo multiplexer that can be taken over by an RC system and controlled by
a remote human pilot

— Include stabilization control modes in case of navigation sensor failures, such as
attitude, altitude hold control

— Include an autorotation landing controller in case of total engine failure to land
aircraft

Running Landing

Tail Failure
B UNIVERSITYor

DENVER
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Basic Maneuvers (Basic navigation) oo N N

e Take-off/Landing 11 N f ‘F
. | 5
e Forward Flight | t i .
\ T
 Waypoint navigation \ | y 4
---—ﬁ,{__‘\\_ia — :,_f_ TR = | C/// /j
- A c i “‘__:_,‘,._-—-—f“'_ﬂ:_, g
. . — o i A
Aggressive Maneuvers (acrobatics) i
e Straight lines g
° T 4
urns f.\ _
. o B =
Loops A B

e Rolls (line/barrel/snap)
e Knife's edge
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Cooperative / Formation Flight

Multiple UAVs coordinated either through a higher
level supervisory / centralized controller or
following a leader vehicle

Other techniques include using potential fields or " :-
behavior-based approaches

G
current :
leader  Bou el
[.'rﬂ b .II'Irl }r. |_t _I
7 C - Zas
expected Coordinator
leader
{I;-.pn |'|-'..I'F.":|.'l|prr.'|'...|' :Ilh' ‘ Coordination *
variable §
] L]
i Local contr Iery‘ L Uy Vi
L s H Py &
UAV, Centralized supervisor architecture [18] UAVy

o - Jobal |G-tame] y-drection
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http://www.danshope.com/news/showarticle.php?article_id=50

Framework for Controller Design  ZENAC 7 7/
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Linear Model

%, = A, )x, + BAL ).

i

u

D,(y,)

F

v

Actual Helicopter Model

X=f(x,u)

Y
m

U

Fy

— ©,(»,)

AN

!
X =¢(x u_ 1)

Nonlinear Model

Controller design
L based on the
linear helicopter

model
4 Control Inputs 12 States
Lateral LIIat X’ yl Z Position
cyclic
Longitudinal lon VX’VV’VZ Translational
cyclic Velocity
Collective col p’ q’ r Angular
velocity
u
Pedal ped 9’ ¢1 l// Orientation
angles
Controller design

| based on the
nonlinear

helicopter model Helicopter as an Input-Output System

Fig. 1 This block diagram illustrates the helicopter controller design problem. The helicopter dy-
namics can be represented by a linear or nonlinear system of differential equations. In either case.

the feedback control law depends on the model choice.

UNIVERSITYor
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Helicopter Control/Dynamics Challenges 7/
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Open-loop unstable (Planes fly, helicopters crash!)
— E.g.: Hovering is open loop unstable
High degree of coupling
— Control channels have high interdependence
Nonlinear behavior
— Underactuated nonlinear system (fewer control inputs compared to system variables)
— Linearization works in small regions

Dynamics spanning wide range of frequencies
— 6 DoF rigid body model; forces created by controlled/uncontrolled aerodynamics and gravity;
Significant coupling between aerodynamic forces and moments
Fast dynamics
— High sampling freq. and processing speed required
Obtaining accurate models amenable for control design
— System identification procedures are lengthy and specialized personnel is required.
Diverse sources of noise and disturbances
— Lower grade sensors due to payload limitations; Wind; Rotor wake; Mechanical vibrations

But.....because of their advantages over fixed-wing UAVs, they are preferred for civilian/public
domain applications, and also certain military applications.

UNIVERSITYor
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TYPICAL HELICOPTER CONTROLLER

|

Outer-Loop

Controller
Force control

|

Moments Control

Inner-Loop

Cyclic

Controller

Collective

I

Inner-loop
Stabilizes unstable plant.

Partial decoupling of control channels.

Generates four low level commands; longitudinal and

lateral cyclic, collective, and pedal.

High bandwidth

Outer-loop

Generates set points for inner-loop.

External set points: inertial frame position (x, y, z) and

heading ().

UNIVERSITY OF nnrvr.n&R
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Rotor I Fuselage
|
|
gusts | gusts
: rotor forces
|
cyclic |
controls | . rotorcraft
Rotor T Angular ~| Translational | velocity
dynamics | rotor dynamics \ dynamics
| moments N
I \
N
| thrust
direction

effect of rotorcraft angular motion on rotor motion

effect of rotorcraft translational motion on rotor motion
|
|

Figure: Block diagram of the longitudinal-lateral helicopter control problem. lllustration
of the cross coupling effect in the torque and force generation.

e Most typical helicopter

control architectures

v

Translational
Dynamics

v

Attitude

Dynamics

o

Collective Control

Cyclic
Control

separate dynamics into inner

T

attitude control and outer
translational control. A third
loop is added for
navigational control.

UNIVERSITYor

DENVER




UNIVERSITY OF DENVER

Rotorcraft state vector
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* The resulting equations are found to depend on a number of parameters, including:
— rigid body variables (u,v,w,p,q,7,®,0,)
— main rotor flapping dynamics (ay, a;, by, dg, a1, by)
— Pitt-Peters inflow dynamics (14, A, A,), stabilizer bar dynamics (ay, b, dg, bs)

— actuator dynamics (6101, O10n, O1ats Oratr Ocotr Ocots Hped: Hped )i

* Full state vector:
X = [H owpqgr CP 6 IP ap ay bl do 5'11 Bl /\0 /\5 /\C als bls gls E)15 elon élon elat élat Bcol écol Htr étr }T

e For most applications, and consideration of simplifications, derivatives and inflow
dynamics are ignored.

UNIVERSITYor
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Flight Dynamics Modeling
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e Linear Models X Ax + Bu

Require a number of assumptions in order to linearize dynamics

Usually valid for a particular set of operating conditions y — Cx + Du
Works for simple maneuvers and non-aggressive flight (hover, forward flight,
etc.)

Allow for simplified control approaches

* Nonlinear Models

More difficult to implement f(x u y x il, y ) — O
y Uy Yy Ay, Uy Yy e

Valid for larger range of operating conditions
Allow for more complex maneuvers and aggressive flight (Loops, etc.)
Control efforts are more robust

e Model Free

Requires numerous flight tests

Employs learning algorithms to teach control system to perform various
maneuvers through analysis of piloted flight data

Control restricted to particular aircraft and flight conditions

UNIVERSITYor
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Standard Procedures Contributions
Modeling | System Identification | Controller Design
Discrete Time Backstepping control
| I resulting in linear error dynamics.
| . . l Controller Design based Continuous Time Backstepping control with
First Principles [— Téme _IfD_om_aln - on the Nonlinear — saturation faction resulting in linear time
I dentification I Helicopter Model varying error dynamics.

Robust Nonlinear Control of feedforward
systems using saturation functions and the
Small Gain Theorem

A PHTETE ES Frequency Controller Design based . . .
and I W\ : N\ ; . N Robust State-Space Design using saturation
. i Domain on the Linear Helicopter -
Simplified Rotor | T~ e L7 functions
. Identification Model
Dynamics | I

UNIVERSITYor
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Handling Nonlinearity through Linearization and Gain
Scheduling

Linear Model 1 Gain
Scheduling /

Blending

Linear Model 2

Linear Model 3

UNIVERSITYor

DENVER




* Non-aggressive flight

Configuration space: change position in 3D
and heading (R3xS1).

Two regimes considered:
e Hovering (includes slow motion).
e Forward Flight.
Decomposition:
e Quter loop: guidance
— Velocity, position commands
e Inner loop: control

— Decoupling
— Stabilization
Input Output
Lateral Cyclic Position in horizontal
Longitudinal Cyclic | Plane
Collective Altitude
Pedal Yaw

lon

UNIVERSITY OF Auwr.r.n&R
UNMANNED SYSTEMS RESEARCH INSTITUTE

Considerations

Forward/backward
Velocity/position
—

Right/left
Velocity/position
—

Heading or turning right/left

Velocitylgosition

Up/down
Velocity/position
—

Helicopter

Inner/Outer Loop Decomposition

- Attitude

Variables Low level control signals:
Desired - Heave - Cyclic
- Trajectory Velocity - Collective Helicopter
- Heading - Yaw Rate - Pedal 1%
Outer-loop > Inner-loop

Controller

/

Controller

» "‘.._
»
-z
! !

A

UNIVERSITYor
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Decentralized Control
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Simplifying assumption: coupling is treated as a disturbance with linear
MIMO system treated as multiple SISO systems

roll ¢

8Ion

pitch 6

yaw v

height -z

Fully coupled MIMO system

5Iat l(s) ¢
Orat
5 0 9
on — (s
5Ion ( )
§ped L(S) l//
Oiat
§col i (S) Z
Orat

Helicopter control with
SISO subsystems
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PID Controllers
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Time-domain equation for the PID
controller with K, the proportional
gain, K, the integral gain, and Ky the = % Ve Q i req i femu, 20 0O | gy | YO,
derivative gain :

e(t) =r(t)-y(t)
u(t) = K, *e(t) + K, *_[e(t)dt+ KD*% SISO PID closed loop control

The derivative term of a PID
controller produces to suddenly

changing signals R = ()
to avoid an undesirable sharp - - -

response the derivative term is Ko*sY©) |
moved from the closed loop forward >

path.

If derivative term is measurable, this Rate feedback PID control

output is used directly rather than
implementing differentiator.

UNIVERSITYor
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PID Control Revisited
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e Two degree of freedom
controllers with anti-windup —> T W o W |
A
e Tu n i n g §- ....... I:’l.l:D.IjI;n.g..-- Uy > Lngitud_nal Ou
— Basic stabilization with : = R g
complete plant: four : Dmae I S
proportional controllers. = :
— Reduce input/output channel A e |
dynamics including cross
couplings. w 1 | e o
— Iterate procedure on other e L
channels. "
PID _ .
Structure y
a | {)17

UNIVERSITYor
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PD-like Fuzzy Logic Controller
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The error e(t) is defined as the difference between the desired signal value
(set point) and the real value of the controlled variable

Ae(t) is the error change.

S, is the scaling factor for the error, e(t).

S.. is the scaling factor for the change of the error, Ae(t).
S, is the scaling factor of the PD-like controller's output..

e(t)

" e | Fuzzy ;
. PI S,
d] JS 14€ || rulebase

dt ce +} Upp

A
w
D>
y

S
=
I

w|r

L Fuzzy
PD >
rule base

A 4

UNIVERSITYor
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PID-like Fuzzy Logic Controller

UNMANNED SYSTEMS RESEARCH INSTITUTE

The error e(t) is defined as the difference between the desired signal value
(set point) and the real value of the controlled variable.

Ae(t) is the error change.
S, is the scaling factor for the error, e(t).
S.. is the scaling factor for the change of the error, Ae(t).

S, and S, are the output scaling factors of the Pl-like and PD-like controller
that constitute the fuzzy PID-like controller.

e 1€ |
> Se Fuzzy 0., Up,
A PI NS P L
d| JS 14€ |} rulebase
dt ce + 4 UpiD

L Fuzzy
PD
» rule base

=

u
PD PD
> SZ

UNIVERSITYor
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LQG Control Strategy

Trajectory
Generation

o

Cascaded Control Structure

UNMANNED SYSTEMS RESEARCH INSTITUTE

Body-
Outer-Loop | o/~ Inner-Loop| U Frarrble J(q) OX., 11 -
Controller Con/troller Dynamics f )
/

/

LQG Controller

y
YSP_| S Kref

u

=

L

Kalman
Estimator

Kigr

KLOR'%

- Model

UNIVERSITYor
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Outer-Loop Control Design

* Inner-loop reduction
e Quter loop handled by 4 PID controllers and a correction block for
trajectory input.

Inner-Loop
|mmmmmmmmemEsEmm e E e E e m e m .-
&
~ Sspa
xSP_""C[/'—"‘ Correction PID x P I
: / - " bsp nner-
ISP, —P-CK)‘—P Block PID y ! Loop Emly— 1
. i i wsp | llor » Frame > J=] —» =
5P, ! ) PID Controller s
" \]i/ - rep ' LQG Model
sp
PID o : +
1
1
o | | = meeeeeecccecesssssscccsccccesee---
X y <

e PID controllers can be designed by SISO approximation using classical
control techniques.

UNIVERSITYor
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LQGI Control

e LQG control with
integrator for tracking
— Plant augmented with Augmented Plant

2-DOF LQGI Controller

T 1 R e S E— |

e Separation principle ; S_.; [ e veomer
— Kalman filter design L ] e i

Kalman Filter LQR Gain

— LQR gain design R —

e Full support of
Computer Aided
Control System Design
(CACSD) tools: MATLAB

UNIVERSITYor
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MPC Control Position Tracking System

Waypoint
trajectories
(inertial
coordinates,
heading,
time)

where;:

-

Multi- PID
Controller

TP =

>

Model
Predictive
Controller

(Body

Frame)

Body-frame
Aircraft
model |

i

I

cocy

coOsy

C@SOSy — SgCy

-S4

SPSOCy —CPSy  SPsOSy +CocCy  S¢@ch

| CosOcy + Sspsy cpco |

and T, =(T)

UNIVERSITYor
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Parameters Estimates

States Estimates

Joint Kalman
Filter

Helicopter |

Controller Control

UNIVERSITYor

DENVER
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NONLINEAR CONTROLLER METHODOLOGY

UNMANNED SYSTEMS RESEARCH INSTITUTE

Backstepping Approach
Derive Helicopter Model

Rigid body dynamics, External Wrench model, complete rigid body dynamics
Translational Error Dynamics

Attitude Error Dynamics
Yaw, Orientation error dynamics

Angular Velocity Error Dynamics
Stability of the Attitude error dynamics
Stability of the Translational error dynamics

UNIVERSITYor
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Concepts of backstepping controller - |
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Pure feedback form
The controller requires that the equation describing the system dynamics

could assume the following form:

e X € R" and ¢k states

€2, &3) e f. (i=1,...,k) nonlinear
< : function

Sk—1 = fr=1(, &1 Ek) f. depends only on ¢

UNIVERSITYor
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Concepts of backstepping controller - Il

UNMANNED SYSTEMS RESEARCH INSTITUTE

Nonlinear recursive control

Each differential equation is considered as a subsystem to be controlled, its control
is the state of the upper order equation. The external input u controls in cascade
the all system.

(i = flx)+ g(x)& emmmm  §1 CONtrols the state x
5:1 = f1(x,&1,&2)
2 = falx,&1.62. &3)

\
fﬁc—l = fk_l(;r, 51, &) emmmm ¢k CcONtrols the state &k-1
\ Sk = fr(w. 810 S ). 4smmmmm U coONtrols the state &
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Why a backstepping controller

UNMANNED SYSTEMS RESEARCH INSTITUTE

Problems with traditional (linear) UAV control techniques:

 Highly nonlinear behavior.
|_> a proper control law uses natural nonlinearities to stabilize the
system
 Unmodeled system dynamics.
|—> Inclusion of dynamics contained in the nonlinear terms
* Robustness to parametric uncertainties and external disturbances.
|_> Inclusion in the control of nonlinear damping terms to improve
robustness
» Coupling between longitudinal and latero-directional planes.

|—> Inclusion of nonlinear coupling terms

The main strength of backstepping is the ability to deal with nonlinearities.

DENVER
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Equations of Motion

UNMANNED SYSTEMS RESEARCH INSTITUTE

Set of 12 nonlinear equations describing the dynamics of any
aircraft (rotary or fixed wing) [1].

States:
i - 1 I ~
" — 1) * Position
Position p L
dynamics 1
! 'gI — _RfB « Velocity
?(Tlf
i . ~ B « Orientation
Orientation R — Rw matrix
dynamies - B B B B Angular
Iw — W X (Iw ) —I_ T velocity

[1] I.LA. Raptis and K.P. Valavanis, 'Linear and Nonlinear Control of Small-Scale Lk
Helicopters’, Springer, 2010 icuas Tutorial on Navigation and Control

anned
UNIVERSITYor
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Helicopter

UNMANNED SYSTEMS BESEARCH INSTITUTE

Helicopter: equations of motion are already in cascade
form

I

p — |V
@ @ Control inputs, forces and moments
l generated by the rotors, they do not

5 depend on the states.
. Lt
w”

B

:— X (Zw") @

ICUAS Tutorial on Navigation and Control ﬁ DENVER
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The rotorcraft controller design problem has been tackled!

Integrated control + diagnostics has been studied
NMPC+ANN design for vertical autorotation (post-failure)

Sense-and-avoid/see-and-avoid systems to be integrated with the FCS.

Next step: Complete implementation and testing.

W.! UNIVERSITYo

%) DENVER



Summary of Control Approaches

UNMANNED SYSTEMS BESEARCH INSTITUTE

PID
(SISO)

LQR/LQG

Linear
H-c0

Gain scheduling

Easily Implemented

Assumes simplified decoupled dynamics
Gains can be tuned in flight

Can be used to stabilize outer/inner loop
dynamics .
Can cope with parametric uncertainty and
un-modeled dynamics

Loop shaping o

Switching between a family of linear
controllers to be used to cover a larger
range of operating conditions

Mostly hovered flight
Attitude/Altitude control
Lateral/Longitudinal control

Lacks robustness
Ignores coupling of dynamics

Limited to certain flight conditions
Gain calculation is an iterative process
Higher level of mathematical
understanding and computation

Need a reasonably good system model
Higher computation requirements and
storage of controller gains

Need to determine parameters used in
decision making

Hovering, trajectory tracking

Hover, trajectory tracking

Hover, trajectory tracking,
backflip (quadrotor)

Back stepping

Feedback
Linearization

Adaptive

Model Predictive
Control

Well known technique for under actuated e
systems

Nonlinear transformations techniques .
transforms variable to a new coordinate ¢
system where dynamics are linear

Robust technique that can handle un- o
modeled dynamics and parametric o
uncertainty o
Can handle multivariable control .

Tracking errors can be minimized

Trajectory tracking,
autorotation landing
Auto take-off, landing,
hovering, aggressive
maneuvers

Need exact knowledge of nonlinear
functions

Higher computational complexity
Transformed variables and actual
output may differ greatly

Complex analysis

Various approaches

Need decent knowledge of system
Prediction model must be formulated
correctly

Formation flight, vision
based navigation

Target tracking,

Neural Networks

Learning
Based

Fuzzy Logic

Human Based
Learning

Models can be identified offline or online
Can be combined with standard techniques ¢

Able to execute basic flight behaviors

Learns from human pilot execution of
maneuvers

Need to train the network

. Hovering, autorotation,etc.
Can increase the order of the controller 8

Hovering, forward flight,
climbing turns

Need to train the system and develop
accurate rules

Requires both modeling and flight data Aggressive maneuvers

% UNIVERSLI Yof
I
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Controller Performance

UNMANNED SYSTEMS RESEARCH INSTITUTE

O Hover and cruise:
* Has been shown to be achievable with all controller types

O Tracking
* Necessary and sufficient to define desired position trajectory and heading for control
purposes

O Improved flight envelope

e Combine various control schemes (PID, LQR, MPC, NN, ..) in order to improve
robustness and flight envelope.

e Use of Fuzzy networks, NN, or learning algorithms to switch between control
strategies in order to create smooth control action transitions.

e Account for actuator saturation to ensure stability and performance.

UNIVERSITYor
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Proposed Overall Control Architecture

Helicopter Control

Architecture

Helicopter Dynamics

Pilot Takeover

'

Trim values

&

&

]
&

ped, 0

Nomenciature

Vo=[u,v, wl=[z,§.z2]

P.=[x.¥.z] local reference frame

w=[p.q.r]=[2.9.9]
8,=[9,0,y]=[roll, pirch, yaw]

P _=[k. ¢, h]: geodericcoordinares

UNIVERSITY OF nnrvr.n&R

an.‘n a"'-‘"- o
am- 6"*’-0‘
B e -y
b 8

oo

Inner loop

control

A

Inner loop
command

Outer loop [+—1V,. a,

control i

e :

P.T rer D rer i

1

1

Tracking i
control [¥ 1T W

1
1
i
1
1
wmf Bn_-_;' q)n.'_r'i
i
generator N

1

maneuvering

Trajectory tracking &

Camera

i . Senvo Fautt
H Servo Dynamics - Controller and | =% Compensation
i Failsafe Switch Takeover
1 ] ] " r
: Ff}pm‘ éco.i alcm aI'.an'.l.' i
' 1
' 1
Yaw rate :
! | Feedback
i Gyro !

1
H T 1
: réﬁ"“‘i v ¥ Y i
: :
: Helicopter ; i Fault Detection
i ! i
B Mtk bl H .

i i Auto-rotation
------------------ 1
Sensor Suite @~ :_ __ TTTToTTmmmmTAmmmmTATTOTTTTTTTRT
Pg* Vn Sensor Fusion
GPS = Algorithm
B (EKF. UKF, NN |8
) " " . " "

Sensor Fusion
Algorithm

[EKFI B
u’,,, Fuzzy, eic)

!

Control mode selector/
flight scheduling

(Hower, forward flight, take-off,
lamding, evasion, tum, abort, auto-
rotation, eic.}

Raw Image Data

DU Sense and Avoid

Laser Range
Finder

Sensor Fusion
Algorithm

(EKF, UKF. NN, |/

Fuzzy, etc)

Sense & Avoid
Algornthms

Tpg,@da:ed ? wu_pdamd

Fath planning/
Avaidance -

Image
processing

Image information

i

RPSRI VRNV, S P

I‘ Radar Hardware ‘

Y

Vision-based
algorithms
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1 Nomenclature . ; )
. - Trommed inputs
Helicopter Control — Nomencaure Piotinuts
Arc h itect u re 6,.”‘. o P.=[x.y.z]:local reference frame imn ?'-"-‘ﬂ- u
B0 w,=[p.q.7]=[4.9.9] 5 6"“"'“’
6}1-1 o ,=[9.0.w]=[roll, pitch, yaw] 6‘“"1 6,:-.«:.0
il ood, B
__________________________________ Pilot Takeover 6‘“""' ¢ P _=[}.9.h]: geodeticcoordinates
1
Helicopter Dynamics : W T mm T e n s n e ;
i i i
. ! Senvo Fault ' I
Servo Dynamics <——| Controllerand |=*{E Gompensation i i
i | Failsafe Switch Takeover [———+— '
a r é v a ] a ro 1 1
ped col lon lar | 8., ' !
' : Bu |} :
Yaw rate E Bpua i Desired Controller i
Feedback : Beur |1 i
Gyro ; : :
1 H 1
-_— 1 1 L]
1 [ ]
rém ¥ Y 1 i : :
1 L] ]
. : Pmm e s smmmmmmm s s s s i
Helicopter ; ! Fault Detection ¥ ;
1 v O OO ] lemmmmm e memem e e m e me e e e m e e e e e E e mmm———————————— A
Y E uto-rotation :._'
i Sensor Suite R ininiinininininininin B i Sommmmmmmmemmm e e "1 Vision System |
: PV, SensorFusion | P_ : Trajectory tracking & i y :
E GPS : I T E— maneuvering ¥ Camera ;
i Vs (EkF UkENN, | P, i| Control mode selector/ |} _ i
i w bin - Fuzzy. elo) et g flight scheduling : : FRa-w Image Data i
' ' : (Hover, forward flight, take-off, it H
: : - b 1| landing, ion, tum, abort, auts- |1} '
- - SemoFon |} a,08,,0 3| mmemmin e [ image |
! MU S Alqorith ] " n processing :
: orithim ' , il H
E i meas g, EKELK: - L — 1 TPg,@cﬁ::ed . ]"’u_p(famd ! ! H
i | Magnetometer P (BHE UK I, | P . I 11| Image mformation E
: ! mag Fuzzy, stc) | DU Sense and Avoid | ! , oy i
' ! g 2 Avoid I Path planning/ i :
' ' B ense VOl v H » ' . .
' Altimeter i Sensor Fusion E Algorithms i » Avoidance | i : Vision-based E
i b My Algorithm : by t1| algorithms |1
! | LaserRange |! (EKF.UKF.NN. R 1 i poTmTmmnees 'F """"""" ) S| i
: i : Fuczy ; | |
L Finder 1 /My = j | Radar Hardware |} Perers Wry
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Challenge: Timing and synchronization

UNMANNED SYSTEMS RESEARCH INSTITUTE

Helicopter FCS Framework

Main FCS Onboard Software

MEY SENS: Navigation sensor sulte - - wi

HELI SENS- Perpheral sensars Incuding main rotar RPM, fusl level sansor, yaw rate gy, ete. ~ ireless
MAIN GND COM: Communication protocol o ground contral station,

EATE COM: Communication profocol to landing piatform.

PROGRAM WISION COM: Communication o wision computer

BADAR COM: Communication to radan’ sense & awold system

i 4 DATA: Coliection and logging of fight data :
i Ewent Manager ¥ i
! [ [ [ i i [ h ] [ i
i Data Bus E
i [ [} L [ [} [} & 'Y !
i L ¥ | ¥ 3 L L Y L ¥ L | ¥ L L ¥ E
i MAY HELI GMND PLTF VISION RADAR i
i SENS SENS el = COM COM COM COM DATA :
i § ] i Y ) h 3 :
i Y ¥ ¥ r ¥ v i
i MNAY HELI RC RX s SERVO WIFI WIFI VISION RADAR MEMORY i
i SENSORS| |SENSORS CONTROL MODEM MODEM HAW HW CARD !
i Onboard Hardware 'l i }?M i
T T . o e e e !
. \ — _\\ —_—— _ .
Y A 1
RC GROUND LANDING
Controller STATION PLATFORM
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Requirements

UNMANNED SYSTEMS RESEARCH INSTITUTE

“The system must be equal to or better than the theoretical see and
avoid capability of a human pilot”

Field of Regard

Source Azimuth Elevation
Int’l Standards, Rules of the Air .
’ ’ +/-110° No guidance
Section 3.2.2.4 (ICAO) g
ACC/DR-UAV SMO
Sense and Avoid Req_mrement for +/-110° +]-15°
Remotely Operated Aircraft (ROA)
25 June 2004
American S_tandards for Testing +/-110° +/.15°
and Materials (ASTM) 2411.04
U.S. DoD Standardizati
o ndardization +/-110° +]-15°

ngram Office

Detection range dependent on vehicle cruising speed. %‘%‘ﬁR\S}Eﬁ



Why Radar?

UNMANNED SYSTEMS RESEARCH INSTITUTE

* In addition to optical systems our radar system offers:

e Lower computational requirements for detection and
identification

e Immunity to sunlight and other common light sources
e Less affected by “optical clutter” (Clouds, Dust, glass, etc...)
e Multimode operation:

e Range detection, Doppler sensing, SAR mapping, Data
Communication, etc...

* Does not require inter-vehicle cooperation as is the case with
other systems (TCAS, PCAS, FLARM)

UNIVERSITYor
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Signal Origins

UNMANNED SYSTEMS BESEARCH INSTITUTE

2V
AF =F (C — v) F = Transmit frequency (10.5GHz)

c = Speed of light

v = Object velocity

AF = Doppler shifted frequenc
AF = 70.048v PP A

http://withfriendship.com/images/b/9240/Doppler-effect-pic.jpg
UNIVERSITYor
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Target Detection (Walking Human) Ziilii§
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Target Detection (Walking Human) Jiigcy -7
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Origin of Complex Signatures: Helicopter

td td td
UL T Ty Aux(T)]

r T 1o

2F
Helicopter_Spectrum(T) = ( . )

d = Component diameter

T = Rotational period of main rotor

F = RADAR transmit frequency (10.5GHz)

c = Speed of light

UNIVERSITYor
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Experimental Setup

UNMANNED SYSTEMS RESEARCH INSTITUTE

Quadrotor

0.6 Meters

RADAR 3 Meters Coaxial
System Helicopter

Angular Separation: 11.31 Degrees

0.6 Meters

Conventional
Helicopter

UNIVERSITYor
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Processing Algorithms
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Applications: Manned Aircraft Evasion

UNMANNED SYSTEMS RESEARCH INSTITUTE

Evasion Detection Safety Other

i Region Region Region Air Traffic

 Evasion scenario divided into range “shells”

*Evasion — Determined by opposing aircraft
dimensions and UAV’s acceleration
*Detection Region — Determined by threat Radar Cross
Section
«Safety region — "N” multiple of the combined evasion
and detection regions

« All regions affected by the combined vehicle velocities.

DENVER



Uniqueness
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e Other devices address larger vehicles, and the associated high
acquisition costs hinder widespread implementation

e Furthermore, commercially available, miniature airborne radar
systems do NOT address the air to air collision scenario. There are,
however, systems for the following:

* SAR Mapping
e Radar Altimetry / range finding

e Qur system is capable of addressing the above scenarios IN ADDITION
to air-air collision mitigation

UNIVERSITYor
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UAS & THEIR INTEGRATION INTO THE NAS -&%
BERAY J -T7?

Accidents and damages

-

i

. ) Ground id-ai ' !

Primary Accidents . Mlc_l :alr Unintended '

Impact collision movement :

Falli |

. alling '

Secondary Accidents . .

Y debris |

|

| and/or |

Injury or Damage Damage to Impact on Impact

fatality to system property environment on society

ULNL \/ ERSITYGf

&7 DENVER



UAS & THEIR INTEGRATION INTO THE NAS -&‘%
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Fig. 5.2: Fatality rates from general aviation, commuter and air carrier accidents as a function of
time. Based on analysis of NTSB accident data [15] between 1983 and 2006.
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1 T T TTTTTIT T T T TTTIT T )I/,I‘J-ffl'l'r T T T TTTIT T IIIIIII| T==T T T TTIT T T T TTITIT T T T TTITT T T T TTTTT
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- ;‘f ! . .
L Ir-' f i
0.8 / i —
I | E 1
> ! I
= B i ! 7
s | | | _
S 0.6 | ! -
“— ! I i
(@] i ] i'
> I i | I
Fo I ! i |
© 0.4 ! JJ |
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o I | ! R RCC323 I
I ; J ]
021 / i --—- RCC321 -
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- f; ’ JJl .
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Fig. 5.4: The probability of fatality as a function of kinetic energy impact as estimated by Weibel

[20] and models derived in RCC321 [18] and RCC323 [17].
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1 T T TTTTIT T T TTTTIT T I/,u-rrrrr T
0.8 |
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Fig. 5.5: The probability of fatality as a function of kinetic energy impact for the proposed model
with o = 10°], B = 1007 and for several values of p,. For comparison purposes the estimates of

©
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Table 5.12: The percentage of the US area over which each UAS can loiter without violating
set TLS requirement, based on exhibited reliability. The bold column represents the reliability of
manned general aviation. Population density data: [1].

Ty in hr
102 10° 10 10° 108
RQ-4A Global Hawk  0.4% 7.1% 38.8% 79.5% 96.6%
MQ1 Predator 25%  25.6% @ 64.2% 93.8% 99.0%
RQ-2 Pioneer 14.7% 52.9%  90.3% 98.3% 100.0%
Neptune 43.8% 83.9% 97.2% 99.9% 100.0%
Aerosonde 53.2% 90.4%  98.3% 100.0%  100.0%
RQ-6 Fire Scout 7.7%  40.8% 81.4% 96.8% 99.8%
Guardian 32.7% 72.4%  95.5% 99.5% 100.0%
Rmax type IIG 55.9% 91.5%  98.5% 100.0%  100.0%
Vario XLV 79.1% 96.5%  99.7% 100.0%  100.0%
Maxi Joker 89.4% 98.1% 100.0%  100.0% 100.0%

UNIVERSITYor
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(a) RQ-4A Global Hawk

(b) MQ-1 Predator

Aceeptable Tey; in hours to overfly corresponding arca

J 1 ||  — ]
< 1 10% = 10° e =10t 10— 10° > 10°

Fig. 5.6: The areas of the US, the RQ-4A Global Hawk and the MQ-1 Predator UAS are allowed
to loiter over based on their reliability with respect to ground impact occurrence frequency.
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(&) Yamaha Rimax IIG

v P
(i e
/ L
T

3

{ [ ]

(b) Maxi Joker 2

Acceptable Tz in hours to overfly comresponding area
[— 1 = ]

<107 107 — 107 10° — 107 107 —10° =100

Fig. 5.8: The areas of the US, the Yamaha Rmax IIG and Maxi Joker 2 helicopters are allowed to
loiter over based on their reliability with respect to ground impact occrence frequency.
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(b) MQ-1 Predator

Accepiable Tz In hours o overlly corresponding area
1 1 | j| .

EQfiE IR 10 ot = 108

Fig. 5.9: The arcas of Europe, the RQ-4A Global Hawk and the MQ-1 Predator UAS are allowed
to loiter over based on their reliability with respect to ground impact occurrence frequency.
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(b) Maxi Joker 2

Acceptable Ty in hours Lo over(ly correspending area

I R N A S A

<

<0 19710 o Lt 10 = 107

Fig. 5.11: The areas of Europe, the Yamaha Rmax IIG and Maxi Joker 2 helicopters are allowed to
loiter over based on their reliability with respect to ground impact oceurrence frequency.
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IDEA Presentation, 2016

UNMA UNMANNED SYSTEMS RESEARCH INSTITUTE

:Unmanned Circulation Control Aerial Venhicle for
Short Takeoff and Enhanced Payload

i G b
Konstantinos Kanistras, Pranith C. Saka, Kimon P. Valavanis
and Matthew J. Rutherford

UNIVERSITYor

ENV ER



Research Goals

Focus on designing, modeling, developing and experimentally validating
and verifying through wind tunnel and flight testing Circulation Control
Wings (CCWs) for unmanned aircraft, which will allow for [lift
enhancement, resulting in:

UNMA UNMANNED SYSTEMS RESEARCH INSTITUTE

O Increased payload capability
v' More sensors on-board
v Additional payload (more cargo, fuel, etc.)
that allows for mission flexibility

0 Reduced takeoff /landing runway distance
v’ Less infrastructure required

v' Smoother landings

4 Increased stall angle and reduced V., 7
v Allow for lower velocity over areas of interest |
v Increase maneuverability .




What is important in the UAV Industry?

UNMANNED SYSTEMS RES/ vwmanues sysvems meseancu insviru;

Aerodynamic
Efficiency

e - ‘ Reduced
Increased Reduced - fuel / battery
Payload Runway — | consumption
Distance |
More sensors
on-board
\_ y, Increased Cost- Green
- v ~ versatility effective Aircraft
More missions
accomplished R ——
. y DENVER



| Weight Specifications:

ESSSse. |- Wing: 1780 g/ 3.90 Lbs

E |+ Tail & Booms: 340 g/ 0.75 Lbs
j* Fuselage: 1840 g/ 4.05 Lbs
1° Batteries: 940 g/ 2.10 Lbs

Specifications:
« MTOW :4.7kg/10.8 Lbs

* Ground Speed: 19.5 m/s

« Max Speed: 20-23 m/s




Research Achievementiis

DeedCrAMusiiniedratedowittea)Citeulatiore Gantrol system that:

e - Blbpartsaressi2 printeduring takeoff
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Research Timeline
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| Accomplished Tasksl

Ongoing Tasks

A

4 N
N/ 4 ) N/ 4 N\ [ \
Runway Increased cC oh
Dual CCW ASU ADS Distance Payload & Different
Wing Radius Plenum Wind Design Design Reduction Improved' Platforms
Design Flap Design Tunnel & & Aero-dynam|c
Design Testing Testing Testing Flight Efficiency Flight
Testing ;
Flight Testing Testing
J\_ \ Y J\_ \_ J
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The Road Ahead
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Prepare for the new era of NAS operations
U Develop experimentally proven and reliable technology
U Address safety issues through technology
U Design and build stable controllers with fault tolerance
U Enhance onboard intelligence to overcome issues with lost comm links
U Design emergency systems to protect the public in the event of
catastrophic failures.
U Enhance vision systems and alternative sensors to provide true
see-and-avoid capability
U Obtain FAA experimental (and later on full) certification
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The Road Ahead
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See and Avoid Technology

[ Use of latest estimation tools to provide adequate information even under
very strict size, weight and power limits.

U Focus on full trajectory estimation of detected targets (v.s. position only)
O Definition of appropriate metrics to determine performance

O Full proof-of-concept demonstration in accurate simulation environment
O Integration with guidance, navigation and control algorithms to provide
efficient “avoid” capability
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Safety Technology
O Full control architectures that incorporate:
U Robustness (all weather design)
U Intelligent path planning with provisions for lost comm links
U Redundancy
U Health monitoring
1 Reconfigurable control algorithms
U Emergency systems for safe flight termination
L Same robust design to allow recovery under any conditions
O Minimal requirements to provide adequate performance under the
strictest size, weight and power limitations.
U Focus on public safety v.s. aircraft integrity
It is better to lose a UAS than risk an injury
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